
CpSc 418 Homework 5 Solution Set 55 points

Version: April 7, 2018
Solution sample code can be found at

https://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/5/hw5-soln.zip.

The sample code does not include all of the tests that we ran against your code.

1. Are We Having Another Moment? (25 points). Implement the reduce pattern on CUDA
to calculate the central moment approximations

E[X] ≈
∑n−1

i=0 xi

n
and µk ≈

∑n−1
i=0 (xi − E[X])k

n
, (1)

for all moments k = 2, 3, . . . , kmax where kmax is a (bounded) run-time parameter.

(a) (4 points) Why mixed precision?
Answer: Why double precision for calculations? Single precision will not be accurate
enough. As discussed in K&H chapter 6, single precision floating point has a roundoff
error of about 10−7. Since our data set may have n ≈ 108 elements, it is likely that O(n)
calculations in single precision will yield few accurate digits. In contrast, double precision
floating point has a roundoff error of about 10−15, so we may get some accurate digits if
we keep our calculations well-scaled.
Why single precision input data? Double precision takes up twice as much memory
storage and bandwidth. Double precision requires 8 bytes while single precision only
4 bytes, so while we may be able to afford the extra memory (and corresponding global
memory bandwidth demand) for small arrays (such as the output moments), we cannot
for large arrays (such as the input data set). Mixed precision implementations are often
needed in large reduction problems for these very reasons, although it is admittedly a
headache to keep the precisions correct in the code.
Note that these explanations are much longer than what we required in your answers.

(b) (12 points) Correctness.
Answer: See the sample solution code in the Moments-Soln/ subdirectory. In addition
to the CUDA implementation, several features were also added to moments-main.c to
help with debugging and validating the implementation:

• Another initialization routine seq_float_vector() which returns a vector contain-
ing an arithmetic sequence of values with specified start and step between consecutive
values. The expectation and moments of such sequences are relatively easy to calcu-
late by hand even for large vectors.

• CPU implementations of both the expectation and moment calculation. These are
straightforward sequential loops, so it is easier to build confidence that they are
correct by code inspection.

• A routine check_double_vectors() to compare the CPU and GPU results.
• A routine total_fp_ops() that returns the answer to part (c) to make it easier to

report the FLOPS for a given run.
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• Code to parse input arguments (to make it easier to try different parameters when
optimizing for throughput in part (d)) and code to provide timing and throughput
reports.

All of this scaffolding code is repetitive and annoying to write, but well worth the invest-
ment of an hour if it can save you several hours of debugging. Furthermore, I always find
it best to code a CPU implementation before starting on the GPU implementation—not
only does it ensure I understand the problem and its inputs and outputs, but sometimes
the CPU version is fast enough and I can just quit.

(c) (2 points) Operations: Assume n � 1 and kmax ≥ 2, and consider the computational
cost of (1) as a function of n and/or kmax. How many additions are needed? How many
multiplications are needed? Your answer must include any constants on the leading
term(s) in n and/or kmax, but you can use O() for the remaining term(s).
Answer: We report the computational cost of the serial algorithm. Although the parallel
algorithm may perform additional operations (such as redundant computations to avoid
communication) in order to improve parallelism, those operations are “computational
overhead” and really should not be counted as improving the throughput (otherwise I
could “improve throughput” by running the save-last recurrence from HW4 on a bunch
of extra blocks to keep the SMs busy with irrelevant work whenever the reduction threads
are stalled).

• Expectation requires n − 1 additions and 1 division. Although the division is much
more expensive than a single addition, for n� 1 it will be negligible. We ignore the
divisions in the moment calculations for the same reason.

• Moment 2 requires n subtractions (one for each input element to compute the differ-
ence from the mean; subtractions count the same as additions), n multiplications (to
compute the square) and n− 1 additions (to compute the sum.

• After computing (xi − E[x])2 for element i, we can compute (xi − E[x])3 for the
same element with just one more multiplication. Therefore, by reusing the partial
products from moment 2, moment 3 requires n further multiplications and n − 1
further additions.

• The same holds true for higher moments as well, so each moment beyond 2 requires
n multiplications and n− 1 additions.

• Total for µk for k = 2, 3, . . . , kmax:

Additions: n− 1 + n+ (kmax − 1)(n− 1) = nkmax +O(n+ kmax)
Multiplications: (kmax − 1)n = nkmax +O(n)

Total: 2nkmax +O(n+ kmax)

As a side observation: It does not appear that any of the calculations in the GPU kernel
can be performed as fused multiply-adds (FMAs). Although at each iteration of the k
loop we are performing a multiply (to increase the power) and then an add (into the
partial sum for the current moment), we need to separately keep track of the result of the
multiply in order to use it as the partial product for the next higher moment, so we will
need a separate multiplication. Without FMAs, we should expect our theoretical peak
throughput to drop by a factor of two immediately.

(d) (6 points) Throughput: Answer: See the sample solution code in the Moments-Soln/
subdirectory. Key design features:
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• I chose to use just a single block to perform all of the work so that I didn’t need to
worry about synchronization or sharing partial sums between blocks. Each thread in
the block therefore had to handle n / BLOCK_SIZE input elements. The threads did
the reduction on their assigned elements sequentially. The partial sum(s) for each
thread were kept in shared memory to make the final reduction easier.

• I chose to use one kernel to compute the mean and one to compute all of the rest of
the moments. By computing all of the moments together, each input data element
only needed to be loaded from global memory once (plus once more for the mean).
Because I am using only a single block, these two kernels could have been done in a
single kernel by computing the mean, then a __syncthreads(), then computing the
moments; however, I chose to break them up for clarity.

• After all threads had completed the sequential reduction on their portion of the
input elements, the final result was computed using a reduction tree that is a slight
modification of K&H figure 5.15.

• Threads were assigned non-contiguous input elements: A given thread’s input ele-
ments were separated by BLOCK_SIZE. That arrangement meant that consecutively
indexed threads (in particular, threads sharing a warp) would access consecutively in-
dexed memory locations every time they read from the input array, and consequently,
the global memory accesses could be coalesced.

• In the kernel which computes the moments, each thread is assigned max_moments-1
shared memory locations in which to store the partial sums for moments 2, 3, . . . ,
max_moments. For a given thread, these shared memory locations are also assigned
non-continguously: the partial sums for all threads for moment 2 are stored consec-
utively, followed by the partial sums for all threads for moment 3, and so on. This
choice ensures that consecutively indexed threads (in particular, threads sharing a
warp) will access consecutively indexed shared memory locations and hence will not
have shared memory bank conflicts (there is no coalescing of access to shared mem-
ory). However, this choice does slightly complicate the indexing process both for the
reduction tree and for extracting the final sums for each moment.

Throughput was measured using the flop count described above and the median of five
(or more) runs. Full points for achieving 4 GFLOPS, with a reduction of 1 point for
each power of two reduction in speed; for example, throughputs of 1–2 GFLOPS will
receive 4 points. Bonus points will be determined once we see what peak throughputs
were achieved.
Note that we may measure a different throughput than you. That may be because you
used a different operation count or it may be because your timing routines were placed
in a different location. In particular, if you did not include compute_all_gpu() and
either after_run_gpu() or data_from_gpu() inside your timing loop, you may have
only measured the time to launch the kernel, not the time to complete it.

(e) (1 point) Efficiency: What fraction of peak throughput did your solution achieve on the
GTX 1060 3GB GPUs in the lab? If you did not get a FLOPS count for your own
code, you can report the fraction of peak throughput achieved by Ian’s 5.5(109) FLOPS
solution.
Answer: The peak throughput of the GTX 1060 3GB GPUs is reported in a number of
places; for example, the GeForce 10 Series Wikipedia page. For double precision it is 108
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GFLOPS (when not in boost mode). Therefore my code achieved

5.5(109)
108(109) ≈ 5.1% peak throughput.

As promised, the reduce operation is not something that achieves high efficiency on GPUs.

2. Convolution (30 points). Implementing and exploring 2D convolution.

(a) (8 points): Basic kernel. Answer: See the sample solution code in the Conv-Soln/
subdirectory. Design features:

• As recommended in K&H chapter 7, set_up_mask() places the mask data into con-
stant memory on the GPU. The mask width parameters p and q (and their half
widths) are also stored into GPU constant memory to avoid having to pass them as
arguments to the convolution kernel; however, it would also be reasonable to store
them into static global variables on the CPU and then pass them as arguments to
the GPU at kernel launch.

• Because the mask data is stored in the statically allocated constant memory, nothing
needs to be done in clean_up_mask().

• We assign one thread to each output element. The code in the basic kernel conv_basic_kernel()
is copied directly from the CPU implementation conv_cpu(), except that the outer
two loops (in i and j) are replaced by the thread indexes and there is a test to ensure
that we do not execute the convolution for threads whose output elements are outside
the output array bounds.

(b) (12 points): Tiled kernel. Answer: See the sample solution code in the Conv-Soln/
subdirectory. Design features:

• Each thread in the block is assigned one output element; consequently, once the halo
elements are included the tile will contain more elements than there are threads in
the block. This choice was made to increase the ratio of output elements to halo
elements, but an alternative is to match the tile size to the block size and then only
use some threads for output elements.

• The tiled kernel works in three steps:
i. Load input elements into the tile (including halo elements).
ii. Compute the convolution for each output element.
iii. Write the convolution result to the output array.
Note that threads may be assigned to work with different elements in each of these
steps.

• Variables i and j maintain global thread indexes, which are useful for working with
the input and output arrays. Variables it and jt maintain block thread indexes,
which are useful for working with the tile in shared memory.

• Because there are more input elements in the tile than threads, each thread may need
to load multiple elements. The indexing gets messy. Threads with consecutive indexes
are assigned input elements with consecutive addresses in order to ensure coalescing
of global memory accesses. We achieve this arrangement by using variables related
to it (and hence to threadIdx.x) as the row index into our column-major arrays.
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• For halo elements which fall outside the input array, we set them to 0.0 during the
tile loading stage. It is necessary to have code somewhere which identifies portions of
the convolution which fall outside the input array. By handling this condition during
the tile loading step, only one thread has to check the condition for any given tile
element. If the condition were checked during the convolution, every thread which
touches that element would have to check the condition. Note that in this solution
every thread which touches that element does have to perform a multiplication by
0.0 and then an add to 0.0 during the convolution, but multiplies and adds (and
especially fused multiply-adds) are faster than branching.

• The convolution section is almost identical to the basic kernel except that the indexing
into the tile is based on thread block indexes rather than thread global indexes.

(c) (10 points): Explore the effect of one or two of the following parameters on GPU through-
put by holding the other parameters constant and varying your chosen parameter(s):

• (Up to 2 points) Input data size m = n.
• (Up to 3 points) Mask size p = q.
• (Up to 4 points) Block size.
• (Up to 5 points) Tile size.
• (Up to 6 points) Number of output elements assigned to each thread.

Answer: There are many possible combinations of answers depending on which param-
eters you chose to explore and whether you used a basic or tiled version of the kernel.
The answers below are representative but not complete.

• Input data size m = n. See figure 1. The hypothesis is that the larger the data set,
the more threads which can run in parallel and hence the higher throughput. That
hypothesis appears to hold true for input sizes from 64 to 2048, but the throughput
drops abruptly for input sizes above that. It is not immediately clear what has
happened, although it is possible that caching plays a role in reduced performance
for larger input sets. The difference between basic and tiled implementations holds
steady at a factor of two, which is rather disappointing considering that our quick
analysis in class indicated that the tiling should increase CGMA by a factor near to
pq, which in this case should be several hundred.

• Mask size p = q. See figure 2. The hypothesis is that the larger the mask size,
the more computation to be done. Furthermore, the larger the mask the greater the
CGMA in the tiled versions, because each output value depends on more input values
and hence there is more reuse of the input values loaded into the tile. The figure
shows a slight dependence on mask size for small masks, but throughput is almost
flat for mask sizes larger that 21. More disappointingly, there does not appear to be
any benefit from larger masks for the tiled version—for all but the smallest mask the
tiled version always has roughly twice the throughput. Somewhat surprisingly, the
tiled version does not suffer even as the mask becomes very big, despite the fact that
for mask size 41, over 80% of the tile is halo elements.

• Block size. See figure 3. The hypothesis is that larger block sizes may be harder to
schedule onto SMs (thus degrading performance) but will make better use of shared
memory to increase CGMA. Based on the experiments, it seems the latter slightly
outweighs the former. A block size of 4 does very poorly, since a 4× 4 block has only
16 threads and hence fails to have even one complete warp. After that the power
of 2 block sizes (8, 16, 32) gradually increase in throughput, while the two samples
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Figure 1: Throughput for basic and tiled convolution kernels for varying input data sizes with fixed
mask size p = q = 21 and block size 32× 32.

between these block sizes suffer slightly lower throughput. Potential causes for the
latter effect are memory accesses poorly aligned with cache lines, or possibly for the
block size of 12 a half-full warp.

• Tile size. In Ian’s implementation, the tile size is determined by the block size and
maximum mask size. For the runs described in the previous part, the maximum mask
size was set to 41, so for block size b×b, the tile size would have been (b+40)×(b+40).
Therefore, see the “tiled” data in figure 3 for an exploration of tile size on throughput.

• Number of output elements assigned to each thread. Exploring this parameter would
require a rewrite of the convolution code to allow each thread to handle more than
a single output element. The hypothesis is that perhaps by assigning more work to
each thread, it will be possible to expose more independent operations per thread and
thereby get better (or the same level of) latency hiding while reducing the number
of blocks and perhaps getting better use of the SMs (and in particular their caches).
Whether that hypothesis is true will have to await somebody with the energy and
time to recode their implementation.

Unless otherwise noted or cited, this document is copyright 2018 by Mark Greenstreet & Ian
M. Mitchell and is made available under the terms of the Creative Commons Attribution 4.0
International license http://creativecommons.org/licenses/by/4.0/
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Figure 2: Throughput for basic and tiled convolution kernels for varying mask sizes with fixed input
size m = n = 1024 and block size 32× 32.
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Figure 3: Throughput for basic and tiled convolution kernels for varying block sizes (or equivalently,
tile sizes) with fixed input size m = n = 1024 and mask size p = q = 21.
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