
CpSc 418 Homework 4 Due: March 9, 2018, 11:59pm
33 points Early Bird: March 7, 2018, 11:59pm

Template and support code for the assignment can be found at
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/4/code.html.

Tests included with the template code are not complete, and you should expect that we will run additional
tests against your code.
Please submit your solution using the handin program. Submit your solution as

cs418 hw4
Your submission should consist of the following files:

• hw4.erl: Your solution to the key cracking problem.
• recurr-kernel.cu: Your solution to the getting started with CUDA problem.
• hw4.txt or hw4.pdf: Written response portion of the getting started with CUDA problem.

These files must be at the top level of your submitted archive and not in a subdirectory. Any other
files submitted will be ignored, including any other support code files from the assignment template—your
submission files must compile and run with the unmodified support files.
Please submit code that compiles without errors or warnings. If your code does not compile, we might give
you zero points on the corresponding programming problem. If we fix your code to make it compile, we will
take off lots of points for that service. If your code generates compiler warnings, we will take off points for
that as well, but not as many as for code that doesn’t compile successfully.
We will take off points for code that prints results unless we specifically asked for a print-out or the template
code we provided generates it. Using format/2 or printf() when debugging is great, but you need to delete
or comment out such calls before submitting your solution. Printing an error to stdout when your function
is called with invalid arguments is acceptable but not required.

1. Cracking RSA Keys (15 points). RSA is a public-key cryptography algorithm. Messages are en-
crypted using a public key and decrypted using a private key. The idea is that you can broadcast your
public key to the world, and anyone can send you a private message. Only you have the private key,
so only you can decrypt the messages that you receive. In RSA the private key consists of two large
prime numbers P1 and P2 (don’t tell anyone these two numbers). The public key is P1*P2. RSA relies
on the assumption that the time to factor a large composite number is exponential in the number of
bits in the number.
For this problem, we will consider public RSA keys that are too weak to be useful for real-world
cryptography. Each of P1 and P2 are between 10 million and 20 million. The challenge is:

How many public keys can you crack in under 10 seconds running on
thetis.ugrad.cs.ubc.ca?

The file hw4_lib.erl provides a sequential implementation, crack_keys_seq/3. You will complete
hw4.erl and write crack_keys_par/4. The file hw4_lib.erl also provides functions test/2 and
test/4 for testing your function crack_keys_par/4.
You need to ensure that your implementation of crack_keys_par/4 gives the right answer, but you
should also try to make it fast. This problem is an example of an embarrassingly parallel problem.
See what amazing things you can do. You should also complete the implementation of the function
my_best/0 that returns a tuple of the form {N_workers, N_RSA_Keys} where N_RSA_Keys is the
number of keys you can factor in at most 10 seconds, and N_workers in the number of worker processes
that you want to have in W to achieve this performance. We will use the values from my_best/0 to
confirm your claimed performance.
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As a reference point, Mark’s solution can factor 33,000 RSA keys where P1 and P2 are in [10000000,
20000000] in just under 10 seconds running on thetis. Mark’s solution is 12 lines of Erlang code.
Any solution that cracks 25,000 keys or more in under 10 seconds will get full credit. Solutions which
crack 35,000 or more keys in under 10 seconds will get a small bonus, with larger bonuses given for
larger numbers of keys cracked. (The extra credit is intended to make this problem fun for those who
want to see how they can apply the things we’ve learned about parallel programming and performance
analysis and measurement to get a really fast implementation. Don’t stress about this, but if you’re
having fun, then go for it.)
Note: By limiting the execution time to 10 seconds, it should be possible for everyone to complete
this assignment without bringing thetis to its knees. We recommend that you try to get your timing
measurements done before the deadline to avoid worries of not being sure you can get all the cores to
achieve optimum results.

2. Getting Started in CUDA (18 points). Consider the recurrence map xi = xi−1 + xi−2 where
we assume that x0 and x1 are known. With x0 = 0 and x1 = 1 this map generates the famous
Fibonacci numbers, while x0 = 2 and x1 = 1 generates the Lucas numbers. In order to get some
practice with the CUDA development tools and programming style, in this question we will generate
a large number of these sequences with different values of x0 and x1 on the GPU, using one thread for
each independent sequence. To avoid overflow, we will use a modulo version of the sequence:

x
(j)
i = (x(j)

i−1 + x
(j)
i−2) mod 2k (1)

where j = 0, 1, . . . n − 1 is the index of which sequence we are computing, i = 0, 1, . . . , m − 1 is the
element within the sequence, and k ∈ {2, 3, . . . , 32} is small enough that we won’t overflow an unsigned
4-byte integer. The parentheses are placed around the superscript to indicate that it is an index not
an exponent. If the indexing looks confusing, consider these examples:

x
(0)
0 , x

(0)
1 , x

(0)
2 , . . . , x

(0)
m−1 is the sequence computed by thread 0,

x
(1)
0 , x

(1)
1 , x

(1)
2 , . . . , x

(1)
m−1 is the sequence computed by thread 1,

...

x
(n−1)
0 , x

(n−1)
1 , x

(n−1)
2 , . . . , x

(n−1)
m−1 is the sequence computed by thread n− 1.

Remember that we are working in C now, so all indexing is 0-based.
We will consider three versions of computing these sequences:

• “save-last”: Given x
(j)
0 and x

(j)
1 for all j, compute and return x

(j)
m−1 for all j. Note that the

intermediate values x
(j)
i for i = 2, 3, . . . , m− 2 can be discarded.

• “save-all”: Given x
(j)
0 and x

(j)
1 for all j, compute and return x

(j)
i for all j and all i; in other words,

you must save the intermediate elements of each sequence to memory.
• “cum-sum”: Given z

(j)
1 and y

(j)
i for all j and i = 0, 1, . . . , m− 3, compute and return z

(j)
m−1 for all

j which solves the following recurrence

z
(j)
i = (z(j)

i−1 + y
(j)
i−2) mod 2k.

Note that this recurrence is simply calculating the cumulative sum of the values of y
(j)
i for i =

0, 1, . . . m−3 starting from an initial sum of z
(j)
1 . However, we will not be doing any kind of fancy

reduce tree to solve this problem: Each thread will compute the entire cumulative sum for one
value of j using the obvious linear-time loop. Our interest in this cumulative sum arises from the
fact that if

z
(j)
1 = x

(j)
1 and y

(j)
i = x

(j)
i for all i = 0, 1, . . . m− 3
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then the solution z
(j)
m−1 = x

(j)
m−1; in other words, we compute the same result as (1), albeit in a

rather round-about manner.
We will implement the “ mod 2k” portion of these calculations by taking the bitwise-and with 2k − 1.
The two are equivalent in this case. Modern architectures and optimizing compilers should be able to
run % (C modulo operator) and & (C bitwise-and operator) at the same speed, but for some reason
modulo is running much slower on the linXX machines, so we will use bitwise-and for this assignment.
In the assignment template you will find the following files:

• recurr-kernel.cu: The skeleton file where you will write device and host code to implement the
three versions of the recurrence described above on the GPU. A number of function stubs have
been provided, but you may need to implement additional functions.

• recurr-main.c: Driver file which:
– Implements each of the three versions of the recurrence described above on the CPU. You

may find these implementations useful when constructing the GPU implementations.
– Calls functions from recurr-kernel.cu that implement each of the three versions of the

recurrence described above on the GPU.
– Contains code which parses the command line arguments m, n and k, generates the input

data for each of the three versions, times the runs, and checks that the final result of all runs
are the same.

• timing418.c: Helper code to make it easier to collect timings.
• cuda-helper.cu: Helper code to decypher various error flags returned by calls to the CUDA

libraries.
• cpu-helper.h, cuda-helper.h, timing418.h and recurr-kernel.h: Various header files.
• Makefile: Ensures that the appropriate flags are used during compilation.

Please remember: The only file you should modify is recurr-kernel.cu.
Here is what you should do:

(a) (3 points) Download, build and run the template code. At this point the GPU versions will report
error(s) because their output arrays are not being computed; however, for the purpose of this part
of the question we only want to examine the CPU run times and you can ignore the GPU portion
of the output.
Using k = 24, try different values of m and n such that the median run times are 0.01 to 1.0
seconds. Briefly describe how the median run times of the three algorithms compare to one
another. Based on your understanding of CPU architecture, briefly explain why they might have
this relationship. Do not go into a lot of quantitative details—your entire answer should not be
more than half a page, and might be much shorter.

(b) (9 points) Modify the file recurr-kernel.cu to implement the routines
• save_last_gpu()
• save_all_gpu()
• cum_sum_gpu()
• save_last_kernel()

and any other functions you may need (hint: you will probably need additional kernel functions).
Your implementations must pass the check_uint_vectors() tests included in recurr_protocol()
in recurr-main.c, but you may wish to subject them to additional tests (we certainly will. . . ).
For n > m and run times approaching one second, your GPU implementations should be faster
than the corresponding CPU implementations; if they are not then you have done something
wrong.

(c) (3 points) Build and run your modified code. Using k = 24, try some different values of m
and n such that the median run times are 0.01 to 1.0 seconds. Briefly describe how the median
run times of the GPU implementations compare to one another and to their corresponding CPU
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implementations. Based on your understanding of GPU architecture, briefly explain why they
might have this relationship. Do not go into a lot of quantitative details—your entire answer
should not be more than half a page, and might be much shorter.

(d) (3 points) Consider replacing (1) with the recurrence

x
(j)
i =

(
(x(j)

i−1)2 + 3x
(j)
i−2 + w

(j)
i−1

)
mod 2k

w
(j)
i = (w(j)

i−1 + 5x
(j)
i−1) mod 2k

where w
(j)
0 is provided and k < 16 so we avoid overflow. Assume that we seek the same outputs

for each of the three versions “save-last”, “save-all” and “cum-sum”; in particular, there is no need
to store or output w

(j)
i for any value of i or j once we are done using it. Without implementing

the modified recurrence, hypothesize what effect this modification would have on the GPU
run times of each of the three versions of the recurrence. Your hypotheses should be order of
magnitude; for example, “the run time of save-last would decrease by a factor of more than two
but less than ten.” Based on your understanding of GPU architecture, briefly explain why you
drew each hypothesis. Do not go into a lot of quantitative details—your entire answer should not
be more than half a page, and might be much shorter.

Supplementary Material: Making the CUDA Template Code Work

We have provided a Makefile in the template code, so you should be able to simply call make in the
appropriate directory. If the build fails mysteriously it is sometimes useful to make clean to clear out any
stale object files and then make again. If the build is successful, you should get an executable binary file
whose name is specified by the second line of the Makefile.
Executing the binary requires that your LD_LIBRARY_PATH environment variable in your shell is set correctly;
for example, on the linXX machines it should include /cs/local/lib/pkg/cudatoolkit/lib64). You can
see the value LD_LIBRARY_PATH by typing echo $LD_LIBRARY_PATH at the prompt. If it does not exist or
has no value, you can set it (again on the linXX machines assuming that your account is using the default
bash shell) with the command:
export LD_LIBRARY_PATH=/cs/local/lib/pkg/cudatoolkit/lib64

If it has a value which does not include the CUDA path, you can add the CUDA path (again on the linXX
machines assuming that your account is using the default bash shell) with the command:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/cs/local/lib/pkg/cudatoolkit/lib64

You can either run the appropriate command manually every time you log in, or you can add it to your
∼/.bashrc file so it gets run automatically every time you log in.

Unless otherwise noted or cited, this document is copyright 2018 by Mark Greenstreet & Ian M.
Mitchell and is made available under the terms of the Creative Commons Attribution 4.0 International
license http://creativecommons.org/licenses/by/4.0/
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