
CpSc 418 Homework 3 Solution

1. Tiling (10 points)
Many physical simulation problems are solved using finite element methods. This means that we model
some two-dimensional or three-dimensional region using a grid of points. For simplicity, we will consider
a two-dimensional, N ×M grid. The simulation has a value, i.e. a number, for each of the NM points
on the grid. At each step of the simulation, the value at point (i, j) is updated using the values of
points (i− 1, j), (i, j − 1), (i, j), (i + 1, j), and (i, j + 1). While there are usually special cases at the
boundaries, we’ll ignore those to keep this question simple.
A simple way to make a parallel version of this problem is to divide the grid into K ×K tiles. Assume
thatK is a factor of both N andM . For example, if N = 1600,M = 1000, andK = 100, we would have
160 tiles. Tile (u, v) would have the points for 100∗u ≤ i < 100∗ (u+1) and 100∗v ≤ j < 100∗ (v+1).
The computations for each tile are performed on a separate processor – if we have T tiles, we assume
that the problem is running on T parallel processors. For each step of the simulation, the process for
a tile will

• Send the points on its edges to its neighbours. In particular, it will send a four different message
with K points to its north, south, east, and west neighbours.

• Receive messages from its four neighbours. Assume that the total cost to send and receive a
message with K points is λ+K. This is the communication cost.

• Update the values for its point. Assume that the cost to update a single point is 1. This is the
computation cost.

For simplicity, assume that the total time for a simulation step is the time for communication plus the
time for computation – i.e. we don’t get to overlap communication with computation.

(a) (2 points) How many tiles are there if N = 1600, M = 1000, K = 100, and λ = 1000?

NumberOfTiles = N
K

M
K = 1600·1000

1002 = 160

(b) (4 points) What is the speed-up if N = 1600, M = 1000, K = 100, and λ = 1000?
Let Tseq denote the time for the sequential computation and Tpar denote the parallel
time. I’ll calculate the time for one step of the simulation – if both approaches made I
steps, we would just multiply both times by I, and the speed-up which is Tseq/Tpar is the
same.
Calculating Tseq is just one time unit for each of the N ·M points to update. Thus,

Tseq = N ·M = 1600 · 1000 = 1600000

To calculate Tpar, we calculate the time for one tile to perform its update. Each tile sends
(and receives) a message with K points to each of its four neighbours and then updates
its K2 points. Sending and receiving a message with K points takes time λ+K. There
are four such messages; so the total communication cost is 4(λ + K). The updates take
one time unit each. Thus

Tpar = 4(λ+K) +K2 = 4(1000 + 100) + 1002 = 14400

We now calculate the speed-up

SpeedUp = Tseq
Tpar

= 1600000
14400 = 111.11

(c) (4 points) What is the parallel efficiency if N = 1600, M = 1000, K = 100, and λ = 1000?

1



Efficiency is speed-up divided by number of processors:

ParallelEfficiency = SpeedUp
P = 111 1

9
160 = 25

36 = 0.694

2. Hypercube Bisection (18 points)
Consider a d-dimensional hypercube. Such a hypercube has 2d processors. Let N = 2d. We identify
the processors by their indices, I, with 0 ≤ I < N . For example a four-dimensional hypercube has
processors with indices 0, 1, . . . 15. Each processor has d bi-directional links. Processor I has links to
processors I bxor 2K , for 0 ≤ K < d, where bxor indicates bit-wise exclusive-or (bxor is the Erlang
operator. In C, Java, or Python, use ^) For our four-dimensional hypercube example, processor 3 has
links to:

3 bxor 1 = 2, 3 bxor 2 = 1
3 bxor 4 = 7, 3 bxor 8 = 11

(a) (2 points) What are the neighbours of processor 6?

processors: 7 = 6 bxor 1
4 = 6 bxor 2
2 = 6 bxor 4

14 = 6 bxor 8

(b) (2 points) Describe a path from processor 3 to processor 14.
Notes: your path should traverse three links. There is more than one correct answer to this
question.

Note that 3 = 2#0011; 14 = 2#1110; and 3 bxor 14 = 2#1101. To go from processor
3 to processor 14, a message needs to traverse links spanning the dimensions for 20 = 1,
22 = 4 and 23 = 8. The message can traverse them in any order. This yields six
acceptable solutions:

3 1→ 2 4→ 6 8→ 14
3 1→ 2 8→ 10 4→ 14
3 4→ 7 1→ 6 8→ 14
3 4→ 7 8→ 15 1→ 14
3 8→ 11 1→ 10 4→ 14
3 8→ 11 4→ 15 1→ 14

Any of these are acceptable.

% blend_bits(I, J, K) ->
% the K least-significant bits of J bitwise OR’d with
% all but the K least-significant bits of I
% Example: blend_bits(2#010110, 2#011101, 3) -> 2#010101
blend_bits(I, J, K) ->

Mask = -1 bsl K,
(I band Mask) bor (J band bnot Mask).

Note that 2#010110 is Erlang syntax for an integer written in binary.
We can send a message from processor I to processor J in d time-steps. For 0 ≤ K < d, on step
K< we send the message from processor blend_bits(I, J, K) to processor blend_bits(I, J,

2



K + 1). In particular, if the Kth bits of I and J are the same, then we do nothing on the Kth

time-step. If the Kth bits of I and J different, then we send the message along the dimension-K link
from processor blend_bits(I, J, K) to processor blend_bits(I, J, K + 1). This is essentially
dimension-ordered routing, but dimension-ordered routing skips the steps where I and J agree in their
Kth bits. Dimension-ordered routing can save a few steps, but the remaining parts of this question are
a bit simpler when we can assume that a message can be sent from I to J in d time steps.
Using the routing algorithm described above, consider sending a message from processor 22=2#010110
to processor 29=2#011101 in a 6-dimensional hypercube. The sequence of steps is:

step 0: 2#010110 → 2#010111, % 22 → 23
step 1: 2#010111 → 2#010101, % 23 → 21
step 2: 2#010101 → 2#010101, % no change
step 3: 2#010101 → 2#011101, % 21 → 29
step 4: 2#011101 → 2#011101, % no change
step 5: 2#011101 → 2#011101, % no change

(c) (2 points) Write the sequence of steps to send a message from node 45=2#101101 to node
25=2#011001.

step 0: 2#101101 → 2#101101, % no change
step 1: 2#101101 → 2#101101, % no change
step 2: 2#101101 → 2#101001, % 45 → 41
step 3: 2#101001 → 2#101001, % no change
step 4: 2#101001 → 2#111001, % 41 → 57
step 5: 2#111001 → 2#011001, % 57 → 25

Let C be any integer with 0 ≤ C < N = 2d. Let’s say that for each processor, 0 ≤ I < N , processor I
sends a message to processor I bxor C. All messages can be delivered using the algorithm described
above with d steps. The key observation is that at step K, if bit K of C is a 1, the processor I sends
a message to processor I bxor 2K , and processor I bxor 2K sends a message to processor I. If bit K
of C is a 0, then no messages are sent on that step.
As an example, consider a four-dimensional hypercube, and let C = 7 = 2#0111. On step 0:

processors 0 and 1 exchange messages;
processors 2 and 3 exchange messages;
processors 4 and 5 exchange messages;
processors 6 and 7 exchange messages;
processors 8 and 9 exchange messages;
processors 10 and 11 exchange messages;
processors 12 and 13 exchange messages;
processors 14 and 15 exchange messages.

(d) (2 points) For a four-dimensional hypercube with C = 7, which processors exchange messages
on step 1.

On step 1, processors exchange messages along the 21 link. The 21 bit of 7 = 2#0111 is
1; so messages actually get sent. These messages are:

0 ↔ 2 1 ↔ 3 4 ↔ 6 5 ↔ 7
8 ↔ 10 9 ↔ 11 12 ↔ 14 13 ↔ 15

3



We’ve showed above that for any 0 ≤ C < N = 2d, each processor I can send a message to processor
I bxor C and the total time to deliver all N messages is d. Furthermore, each processor can send
another message at each step. While each message will take d units of time to be delivered, messages
that are start on different steps will be sent over different links. The hypercube allows each processor
to send d messages (one on each link) and receive d messages (one on each link) in each step. All of the
routing and managing of links is done by hardware in parallel by hardware in the processor’s network
interface. All of this means that every processor, I, can send one message to processor I bxor C every
time-step.
That’s a lot of set-up that I included so you’d have some examples of routing on a hypercube. We are
now ready to prove the main result for this problem.

(e) (10 points) Let X and Y be disjoint subsets of {0, 1, . . . N − 1} where X and Y each have N/2
elements. Show that for any choice of X and Y , there must be a C such that if each processor
I sends a message to processor I bxor C, then there must be at least N/4 messages sent from
processors in X to processors in Y and at least N/4 messages sent from processors in Y to
processors in X.
Hint: This problem is asking you to argue about the choice of C that maximizes the number of
messages sent from X to Y . You can do this by determining the total number of such messages
summed over all possible choices for C. What is the average? The maximum must be at least as
large as the average.

For any choice of I and J , choosing C = I bxor J causes processor I to send a message
to J and J to send a message to I on each time step. If we consider all of these choices,
every processors in X sends a message to every processor in Y and vice-versa. There
are N/2 processors in X and N/2 processors in Y . This means that if we sum over all
choices for C, there are N2/4 messages sent from X to Y and N2/4 messages sent from
Y to X; this is a total of N2/2 messages sent across the boundary between X and Y .
Note, we aren’t concerned about the route that each message takes. We know that each
message that goes from X to Y must cross the boundary at least once. That’s enough
for this proof.
There are N possible choices for C. This means that for the average choice of C, N/2
messages cross the boundary between X and Y . Because the maximum must be at least
as large as the average, there must be some choice for C such that at least N/2 messages
cross the boundary between X and Y each cycle. This gives us a lower bound of N/2 for
the bisection width of a hypercube.
Grading note: the problem refered to “bidirectional links”. The argument above could
be rephrased to show that there must be at least N/4 bidirectional links connecting
processors in X to processors in Y . That answer gets full credit as well. Of course, there
are probably other ways to derive a lower bound on the bisection width. I expect that
there will be many, valid variations on the argument above that should get full credit.

We have now shown that for any partition, X and Y , there is some choice of C such that at least
N/4 messages are sent from X to Y and N/4 messages are sent from Y to X. We also showed that
such messages can be sent every time-step. Thus, O(N) message must cross between X and Y at
each time step. This holds for any choice of X and Y . Thus, the bisection width of the hypercube
is O(N). In class, we showed that in three-dimensional space, any network topology whose bisection
width is greater than Ω(N2/3) becomes asymptotically “all wire”; in other words, the fraction of the
total volume that is occupied by processors goes to zero as the number of processors goes to infinity.
We conclude that hypercube processors are asymptotically all wire. This explains why hypercubes were
popular for machines with a few hundred or a few thousand processors, but have not seen widespread
use for larger supercomputers.

4



3. Bitonic Sort (16 points)
In class we described the bitonic sorting algorithm assuming that N was even, and that we could
recursively divide the sorting and merging tasks into subproblems of size N/2 until we get tasks of size
2 that can be solved using single compare-and-swap elements. This requires that N is a power of 2. In
this problem, we will generalize the approach to arbitrary values of N .
The key place where we assumed that N is even is in the lemma:

Bitonic lemma: Let X be a bitonic sequence consisting of 0s and 1s of length N where N
is even. Let

Zi = min(Xi, Xi+ N
2

), 0 ≤ i < N
2

= max(Xi− N
2
, Xi), N

2 ≤ i < N

Then, either Z0, . . . , ZN
2 −1 is all 0s and ZN

2
, . . . , ZN−1 is bitonic, or Z0, . . . , ZN

2 −1 is bitonic
and ZN

2
, . . . , ZN−1 is all 1s.

I’ll generalize the lemma for the case that N , but I’ll assume that X ∈ 0∗1∗0∗; in other words, X is
“up-down” bitonic. I’ll address why it’s OK to make this assumption at the end of the problem.

Better Bitonic lemma: Let X be a bitonic sequence with X ∈ 0∗1∗0∗. Let

Zi = min(Xi, Xi+dN
2 e), 0 ≤ i <

⌊
N
2

⌋
= Xi,

⌊
N
2

⌋
≤ i <

⌈
N
2

⌉
= max(Xi−dN

2 e, Xi),
⌈

N
2

⌉
≤ i < N

Then, either Z0, . . . , ZbN
2 c−1 is all 0s and ZbN

2 c, . . . , ZN−1 is bitonic, or Z0, . . . , ZbN
2 c−1 is

bitonic and ZbN
2 c, . . . , ZN−1 is all 1s.

Hint: OK, I owe you a hint because I had to fix the problem statement (Feb. 9, 2018). Note
that any subsequence of a bitonic sequence is bitonic. In particular, the sequence

X0, . . . , XbN
2 c−1, XdN

2 e, . . . , XN−1

is bitonic. In English, this is the the same as X if N is even, and all of X except XbN
2 c if N

is odd. This modified sequence has even length whether N is even or odd; so, you can apply
the original lemma. Then, figure out what happens with XbN

2 c when N is odd.

Is it a big restriction to assume that X ∈ 0∗1∗0∗. Not really. In the bitonic sorting algorithm,
we always know which kind of bitonic sequence we have at any point in the algorithm. The
lemma can be generalized to handle X ∈ 1∗0∗1∗ – i.e. for “down-up” bitonic sequences.
In this case, the odd element gets appended to the Z0, . . . , ZbN

2 c−1 sequence instead of
prepending it to the ZdN

2 e, . . . , ZN−1 sequence.

(a) (2 points) Give an example forX and Z whereN = 9, Z0, . . . , ZbN
2 c−1 is all 0s and ZbN

2 c, . . . , ZN−1

is bitonic. Your choice should produce ZbN
2 c, . . . , ZN−1 that is not all 0s or all 1s.

There are many possible solutions. The main requiremets are that X must be bitonic
and X0, . . . , X3, X5, . . . X8 must have at least five 0s and at most seven – four of the 0s
ensure that Z0, . . . , Z3 is all 0s, and the fifth 0 ensures that Z5, . . . Z8 has at least one 0.
The requirement that there are at most seven 0s means that Z5, . . . Z8 has at least one 1.
Here’s my example:

X = [0, 0, 0, 1, 1, 1, 1, 0, 0]
→ Z = [0, 0, 0, 0, 1, 1, 1, 0, 1]

5



(b) (2 points) Give an example for X and Z where N = 9, Z0, . . . , ZbN
2 c−1 is bitonic and

ZbN
2 c, . . . , ZN−1 is all 1s. Your choice should produce Z0, . . . , ZbN

2 c−1 that is not all 0s or
all 1s.

Again, there are many possible solutions. In this case, we want the number of zeros in
X0, . . . , X3, X5, . . . X8 to be greater than or equal to 1 and less than or equal to 3. My
example is

X = [0, 1, 1, 1, 1, 1, 1, 0, 0]
→ Z = [0, 1, 0, 0, 1, 1, 1, 0, 1]

(c) (2 points) Give an example for X and Z where N = 9, X0, . . . , XbN
2 c−1 is not all 0s or all 1s,

XbN
2 c, . . . , XN−1 is not all 0s or all 1s, Z0, . . . , ZbN

2 c−1 is all 0s, and ZbN
2 c, . . . , ZN−1 is all 1s.

Now, we need X0, . . . , X3, X5, . . . X8 have exactly four zeros and four ones; X0 must be
0, and X3 must be 1. Of course, X must be bitonic. My example is

X = [0, 1, 1, 1, 1, 1, 0, 0, 0]
→ Z = [0, 0, 0, 0, 1, 1, 1, 1, 1]

(d) (10 points) Prove the better bitonic lemma.
Hints:

• See the proof for the original lemma from the slides.
• You can divide your proof into cases for N even and N odd. You can state that if N is even,

the proof for the original lemma applies (and you don’t need to give more details).
• For the case where N is odd, you can state that you assume that X ∈ 0∗1∗0∗ and that the

argument when X ∈ 1∗0∗1∗ is similar. Of course, you should look over your proof to make
sure that the two cases are symmetric, but they should be for any reasonable proof.

• You may find it useful to observe that for N ≥ 3,

X0, . . . , XdN
2 e−2, XdN

2 e, . . . , XN−1

is bitonic. This is because X is bitonic (by hypothesis), and any subsequence of a bitonic
sequence is bitonic. For this observation, this is the subsequence obtained by deleting the
element XdN

2 e−1.

If X has an even number of elements, then the original bitonic lemma applies; thus,
we focus on the case where X has an odd number of elements. We consider two cases
according to the value of XbN

2 c:
case XbN

2 c = 0: Because X ∈ 0∗1∗0∗ it must be the case that either

• Xi = 0 for 0 ≤ i ≤
⌊

N
2

⌋
and ZdN

2 e, . . . ZN−1 = XdN
2 e, . . . XN−1, or

• Xi = 0 for
⌊

N
2

⌋
≤ i < N and ZdN

2 e, . . . ZN−1 = X0, . . . XbN
2 c−1

In either case, Z0, . . . ZbN
2 c−1 is all 0s, and ZdN

2 e, . . . ZN−1 ∈ 0∗1∗0∗. Prepend-
ing a 0 (i.e. XbN

2 c) to ZdN
2 e, . . . ZN−1 preserves this property, and we conclude

ZbN
2 c, . . . ZN−1 ∈ 0∗1∗0∗ which is bitonic as required.

case XbN
2 c = 1:

Now we use the observation that X0, . . . , XbN
2 c−1, XdN

2 e, . . . XN−1 has an even num-
ber of elements, we apply the original bitonic lemma (from the lecture slides) and get
two subcases:

6



subcase Z0, . . . , ZbN
2 c−1 is all 0s and ZdN

2 e, . . . ZN−1 is bitonic:
all 1s in X must be contiguous with XbN

2 c. The 1s that precede XbN
2 c are moved

by the compare-and-swap operations to the end of ZdN
2 e, . . . ZN−1. Likewise, the

1s that follow XbN
2 c appear in the same locations in ZdN

2 c, . . . ZN−1. All other
elements of X are 0, and therefore all other elements of ZdN

2 c, . . . ZN−1 are 0 as
well. Thus, ZdN

2 c, . . . ZN−1 ∈ 1∗0∗1∗. Prepending a 1 preserves this property, and
we conclude ZbN

2 c, . . . ZN−1 ∈ 1∗0∗1∗ which is bitonic as required.
subcase Z0, . . . , ZbN

2 c−1 is bitonic and ZdN
2 e, . . . ZN−1 is all 1s:

Because XbN
2 c = 1, ZbN

2 c = 1. Therefore, ZbN
2 c, . . . ZN−1 is all 1s a required.

This completes the proof.

Unless otherwise noted or cited, the questions and other material in this homework problem set is
copyright 2018 by Mark Greenstreet and are made available under the terms of the Creative Commons
Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

7

http://creativecommons.org/licenses/by/4.0/

