
CpSc 418 Homework 2
Solution Set

72 points.

1. Poetry Jam (28 points)

(a) Implement Erlang functions to implement a lock process. (12 points)
See the solution in hw2.erl.

(b) Secret messages (12 points)
See the solution in hw2.erl.

(c) Explain your design (2 points)
See the solution in hw2.erl. Li Bai was the winner of the favorite_poet() contest, congratula-
tions!

2. We All Have Our Moments (20 points)

(a) Implement mp_leaf(List, M, X0) -> {LengthList, SumListM.} (2 points)
See the solution in hw2.erl.

(b) Implement mp_combine(Left, Right) -> SubtreeSummary. (2 points)
See the solution in hw2.erl.

(c) Implement mp_Root(RootSummary) -> MomentM. (2 points)
See the solution in hw2.erl.

(d) Test your code. (4 points)
Many cases are covered in moment_par_test(). Notable omission is cases where some nodes are
empty

(e) Speed up versus number of processors (4 points)

NProcs Time Par Speedup
2 0.056 1.846
4 0.033 3.165
8 0.021 5.015
16 0.018 5.915
32 0.011 9.400
64 0.010 10.181

Table 1: Speedup data given a fixed NData
and increasing NProcs

(f) Speed up versus length of the list (4 points)
(g) Observations (2 points)

1

https://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/sol/hw2.erl
https://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/sol/hw2.erl
https://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/sol/hw2.erl
https://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/sol/hw2.erl
https://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/sol/hw2.erl
https://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/sol/hw2.erl


NData Time Par Speedup
212 1.88e-4 2.019
214 2.86e-4 4.389
216 5.52e-4 7.784
218 1.56e-3 14.055
220 6.24e-3 34.275
221 0.012 33.741
222 0.031 25.178
223 0.074 21.600
224 0.191 17.485

Table 2: Speedup data given a fixed NProcs
and increasing NData

There are many reasonable observations, so you may have something different than what
is given below.
For fixed NData and growing NProcs we see a pattern of increasing speedup, but the ben-
efit of doubling the number of processors is considerably less than a doubling in speedup.
This is expected since we are increasing the amount of overhead of communication that
must be done between the combine tree nodes.
For fixed NProcs and growing NData we see a pattern of increasing speedup. This be-
haviour is expected because larger NData for fixed NProcs means more parallel work in
the leaf nodes while holding constant the communication needed for the combine tree
nodes. However, we see a steep drop in our speedup after a certain point. This is due to
the size of our cache. All processors will need to access their data to perform the reduce
function, but not all data can be brought into the cache at the same time so some nodes
will be forced to wait.

3. Scan Tree (10 points)

(a) The upward pass (5 points)
a) {2,18}
c) {2,50}
d) {2,13}
e) {3,45}
f) {3,18}
g) {3,66}
i) {4,31}
k) {6,63}
l) {6,92}

m) {8,94}

(b) The downward pass (5 points)
a) {0,0}

2



c) {4,31}
d) {6,81}
e) {8,94}
f) {11,139}
g) {14,157}
i) {0,0}
k) {8,94}
l) {14,157}

m) {0,0}
q) [12.857142857142858,11.75]

4. Scanning Moments (15 points)

(a) Implement moment_fold(List, M, X0) -> List2 (5 points)
See the solution in hw2.erl.

(b) Implement moment_scan(W, KeySrc, KeyDst, M, X0) -> Est_Moment (5 points)
See the solution in hw2.erl.

(c) Tests and Efficiency (5 points)
Many cases are covered in moment_scan_test(). Notable omission is cases where some nodes are
empty

Unless otherwise noted or cited, the questions and other material in this homework problem set is
copyright 2018 by Mark Greenstreet and are made available under the terms of the Creative Commons
Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

3

https://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/sol/hw2.erl
https://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/sol/hw2.erl
http://creativecommons.org/licenses/by/4.0/

