
CpSc 418 Homework 2 Due: Jan. 31, 2018, 11:59pm
Early Bird: Jan. 29, 2018, 11:59pm

73 points.

Please submit your solution using the handin program. Submit your solution as
cs418 hw2

Your submission should consist of three files:

• hw2.erl: Erlang source code for the coding parts your solution.

• hw2.pdf PDF for the written response parts of your solution and the plots.

• hw2_tests.erl: EUnit tests for your solution.

Templates for hw2.erl and hw2_tests.erl are available at
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/code.html.

The tests in hw2_tests.erl are not exhaustive. If your code doesn’t work with these, it will almost certainly
have problems with the test cases used for grading. The actual grading will include other test cases as well.

Please submit code that compiles without errors or warnings. If your code does not compile, we might
give you zero points on all of the programming problems. If we fix your code to make it compile, we will
take off lots of points for that service. If your code generates compiler warnings, we will take off points for
that as well, but not as many as for code that doesn’t compile successfully.

We will take off points for code that prints results unless we specifically asked for print-out. For this
assignment, the functions you write should return the specified values, but they should not print anything
to stdout. Using lists:format when debugging is great, but you need to delete or comment-out such calls
before submitting your solution. Printing an error message to stdout when your function is called with
invalid arguments is acceptable but not required. Your code must fail with some kind of error when called
with invalid arguments.

1. Poetry Jam (28 points)
I was delighted when Homer, Li Bai, William Shakespeare, and Donald Rumsfeld agreed to participate in
the CPSC 418 poetry jam. They were all very eager to recite their poems and the result was a rather
scrambled recitation. You can try executing

hw2:poetry_jam().

to read a transcript of this fiasco. We need locks so that the poets will give their recitations one at a
time. For this problem, you will use Erlang processes and messages to implement locks.

(a) Implement Erlang functions to implement a lock process. (12 points)
i. Implement a function, lock_create() that spawns a lock process and returns its pid. We’ll

call this pid LockPid in the remaineder of this question. A lock process is a Finite State
Machine with two states: locked and unlocked. See Rage Against the Finite State Machines
– – What are They? LYSE to get a description of how to implement a finite-state machine.
You can do this one brute force by writing locked and unlocked functions. You don’t need
to figure out how to use gen_fsm which is mentioned at the end of the What are They? section
(and described in the rest of the Rage chapter). The lock process should be initially in the
unlocked state.

ii. When the lock process is in the unlocked state, it receives messages of the form
{Pid, acquire}

1

http://erlang.org/doc/apps/eunit/chapter.html
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/src/hw2.erl
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/src/hw2_tests.erl
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/code.html
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/src/hw2_tests.erl
http://erlang.org/doc/man/io.html#format-2
https://www.britannica.com/biography/Homer-Greek-poet
https://www.poetrysoup.com/li_bai
https://www.poets.org/poetsorg/poet/william-shakespeare
https://rumsfeld.com
http://learnyousomeerlang.com/finite-state-machines
http://learnyousomeerlang.com/finite-state-machines#what-are-they
http://learnyousomeerlang.com/content
http://learnyousomeerlang.com/finite-state-machines#what-are-they
http://learnyousomeerlang.com/finite-state-machines

which is a request by Pid to acquire the lock. The lock process responds by sending the
message

{LockPid, granted}
back to Pid. The lock process then transitions to the locked state. Note that it will need to
keep track of Pid as the “owner” of the lock.

iii. When the lock process is in the locked state, it receives messages of the form
{OwnerPid, release}

where OwnerPid is the current owner of the lock. The lock then transitions back to the
unlocked state. Other messages should be ignored – in particular, acquire and exit messages
remain in the in-box to processed when the lock is in the unlocked state.

iv. When the lock process is in the unlocked state, it can also receive a message of the form
exit

The lock process exits in response to such a message.
(b) Secret messages (12 points)

Review We love messages but keep them secret, in the More on Multiprocessing chapter of LYSE.
The lock interface should provide functions for interacting with the lock. You wrote lock_create
above. Now implement:
i. lock_acquire(Lock) This function handles the exchanging of messages with Lock to handle

acquiring the lock. This function should not return until this process has acquired the lock.
ii. lock_release(Lock) This function handles the exchanging of messages with Lock to handle

releasing the lock. Note that this function can return as soon as it has sent the release message
to Lock. That ensures that the lock will eventually be unlocked, which is all we require.

iii. lock_destroy(Lock) Terminate the Lock process, thus freeing its resources.
(c) Test your lock (4 points)

Run the hw2:poetry_jam() function. If your lock is correct, all four poets should recite their
poems without interrupting each other. Furthermore, your lock process should terminate when
hw2:poetry_jam calls lock_destroy – we’ll check to make sure there aren’t any extra processes
loitering around (a few milliseconds) after hw2:poetry_jam returns. Read the poems; choose your
favorite, and complete the function hw2:favorite_poet().

2. We All Have Our Moments (20 points)
Moments are a useful way of quantifying properies of random distributions and can be important for
“big data” problems – I figured you should see them before you graduate. ,
The kth central moment of a random variable, X, is

µk = E
[
(X − E[X])k

]
where E[X] is the expected value (i.e. mean or average) of X.
If we have a list of numbers, x1, x2, . . . , xN that are samples from the distribution of X, we can
estimate the mean and the moments with

E[X] ≈ 1
N

∑N
i=1 xi

µk ≈ 1
N

∑N
i=1(xi − E[X])k

I wrote ≈ because if we have a finite sample, we only get an estimate, but the estimate gets better for
larger N . If I were a real statistician, I would make other corrections as well, for example, dividing
by N − 1 instead of N when estimating µ2 the variance, but I’m not sure what the correction is for
arbitrary k; so, I’ll just use 1/N for all of them to keep it simple.

2

http://learnyousomeerlang.com/more-on-multiprocessing#secret-messages
http://learnyousomeerlang.com/more-on-multiprocessing#secret-messages
http://learnyousomeerlang.com/content
https://en.wikipedia.org/wiki/Central_moment

The template file, hw2.erl, includes a function hw2:moment(X, M, X0) that estimates the Mth central
moment of X assuming that X0 is the mean of X. In this problem, you will write a parallel implemen-
tation, moment_par(W, Key, M, X0) using wtree:reduce.

(a) Implement mp_leaf(List, M, X0) -> {LengthList, SumListM.} (2 points)
• List is a list of numbers.
• M is a number, typically a positive integer.
• X0 is a number, typically the expected value of the distribution sampled by List.
• LengthList is the length of List.
• SumListM is the sum of DM for D = X− X0 for each element X of List.

(b) Implement mp_combine(Left, Right) -> SubtreeSummary. (2 points)
Left and Right are the summaries for the left and right subtrees of this vertex in the tree, and
SubtreeSummary is the summary for the whole subtree. Left, Right, and SubtreeSummary should
have the same form as the values returned by mp_leaf, i.e. tuples of the form {Length, SumM}.

(c) Implement mp_Root(RootSummary) -> MomentM. (2 points)
RootSummary should have the same form as the values returned by mp_leaf and mp_combine.

(d) Test your code. (4 points)
Add test cases to hw2_tests.erl for mp_leaf, mp_combine, mp_root, and moment_par. Note that
moment_par should work correctly once you’ve implemented mp_leaf, mp_combine, and mp_root.
The function moment_test in hw2.erl provides many ways to interactively test moment_par from
the Erlang shell. For example,

1> hw2:moment_test(8, hw2:erlang(100000,3,2.45), 3, 3/2.45).
moment_test passed: N_Data = 100000,
MomentPar = 4.1768203047770e-1, MomentSeq = 4.1768203047770e-1
2>

You can use ideas or code-fragments from the code provided in hw2.erl to help write your tests
for hw2_tests.erl.

(e) Speed up versus number of processors (4 points)
Plot the speed-up versus the number of processors when running on thetis.ugrad.cs.ubc.ca.
Use a list of length 1,000,000 for your tests. When running on N_Procs processors, the list should
be evenly distributed across the processors, for example by using workers:rlist. The func-
tion hw2:moment_time(N_Procs, N_Data, M) gives an example of how to do this, and you are
welcome to use hw2:moment_time to make your measurements. Note that hw2:moment_time(0,
N_Data, M) reports the time for the sequential computation using hw2:moment(List, M). Include
data points for N_Procs ∈ {2, 4, 8, 16, 32, 64, 128} – you can add more if it helps show the trends
more clearly. Use a semi-log plot – i.e. N_Procs on a log scale and SpeedUp on a linear scale.

(f) Speed up versus length of the list (4 points)
Plot the speed-up versus the length of the list when running on thetis.ugrad.cs.ubc.ca. Use
N_Procs = 64 for the parallel case and N_Data ∈ {212, 214, 216, 218, 220, 221, 222, 223, 224}. Use a
semi-log plot – i.e. N_Data on a log scale and SpeedUp on a linear scale. For the sequential case,
here are the times when N_Data ≥ 220

N_Data time (seconds)
220 0.214
221 0.404
222 0.793
223 1.601
224 3.345

3

http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/src/hw2.erl
https://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#reduce-4
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/src/hw2_tests.erl
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/src/hw2.erl
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/src/hw2.erl
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/src/hw2_tests.erl

[5,0,4]

a.

k.

n.

l.i.

Worker 0 Worker 1 Worker 2 Worker 3 Worker 4 Worker 5 Worker 6 Worker 7

[10,10] [0,9,10]

j.

m.

o.

p.

[0,9,7] [2,2,5]

f.e. h.g.

[2,8] [3,8] [8,7]

d.c.b.

Figure 1: A process tree for scan

I’m providing these numbers so we don’t have 80 students running CPU intensive timing mea-
surements right before the deadline. The parallel versions should all run in less than one-second
per run, and thus take about one second per measurement with time_it:t/1.

(g) Observations (2 points)
Write a few observations about the speed-ups you observe. Do your observations match the models
that have been presenting in class and the readings, or do you see discrepancies. A short answer
of two to five sentences should suffice.

3. Scan Tree (10 points)
Figure 1 shows a tree for computing a scan. The list

[2,8,3,8,10,10,8,7,0,9,7,2,2,5,0,9,10,5,0,4]

is distributed across the eight workers. These numbers are integers chosen uniformly at random from
[0, 10]. Thus, the expected value for such an integer is 5. We are interested in computing the cumulative
second moment of this list. In question 4, you will implement this using wtree:scan. This problem is
a warm-up where you will determine the intermediate results of the scan computation.

(a) The upward pass (5 points)
Complete the function q3a in hw2.erl to indicate the results at each step of the upward pass
(i.e. the “reduce” phase). For example, the tuple {b, {2, 13}} indicates that worker process 1
computes {2, 13} as the result of its Leaf computation. In a bit more detail, worker process 1
has the sublist [3,8], the length of this list is 2. The sum of the squares of the differences of the
list elements from the expected value is:

(3− 5)2 + (8− 5)2 = 13

Likewise, the tuple {j, {4, 63.0}} indicates that the summary for the workers 2 and 3 together
have 4 leaves and the sum of the squares of the difference of their list elements from the expected
value is 63.

(b) The downward pass (5 points)
Complete the function q3b in hw2.erl to indicate the results at each step of the downward pass of
the scan. Each node receives from its parent the summary for all leaves to the left of the subtree
rooted at that node. For example, the tuple {j, {4, 31}} indicates that there are four leaves to
the left of the subtree rooted at j, and the sum of the squares of the difference of the values of

4

https://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/time_it.html#t-1
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/src/hw2.erl
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/src/hw2.erl

these leaves and the expected value is 31. If you want even more detail, the subtree at j consists
of workers 2 and 3. The leaves to the left of node j are the elements of the list segments held by
workers 0 and 1. These leaves are [2,8,3,8]. There are four such leaves, and

(2− 5)2 + (8− 5)2 + (3− 5)2 + (8− 5)2 = 31

For the tuple q, your_answer([], ’q3a.a’), you need to write the result list that is computed
by worker 3. Use an inclusive scan. For example, the result list computed by worker 6 is:

[12.133333333333333,12.375,13.117647058823529]

4. Scanning Moments (15 points)

(a) Implement moment_fold(List, M, X0) -> List2 (5 points)
Compute the cumulative Mth moment for List, where X0 is the expected value of elements in
List. This means that for 1 ≤ N ≤ length(List),

lists:nth(N, List2) = 1
N

N∑
I=1

(lists:nth(I, List)− X0)M

For example,

moment_fold([1,3,14,-2], 1, 0) -> [1.0,2.0,6.0,4.0]. % running average
moment_fold([1,3,14,-2], 2, 4) -> [9.0,5.0,36+(2/3),36.5]. % running variance

(b) Implement moment_scan(W, KeySrc, KeyDst, M, X0) -> Est_Moment (5 points)
Compute the cumulative Mth moment for the list that is distributed over the workers of W and
associated with KeySrc. In a bit more detail, if List is distributed over the workers of W with
key KeySrc, then Est_Moment should be the same as

moment(W, KeySrc, M, X0)

(we’ll accept “close” in the sense of hw2:close/2). Furthermore, after executing

moment_scan(W, KeySrc, KeyDst, M, X0)

The workers of W should have a list associated with KeyDst is the list of cumulative Mth moments
of List. Figure 2 shows an example.

(c) Tests and Efficiency (5 points)
Add some test cases for moment_fold and moment_scan. hw2_tests.erl Your implementations
should have reasonable efficiency.

Why?
I’ll summarize the learning objectives connected with each question.

Unless otherwise noted or cited, the questions and other material in this homework problem set is
copyright 2018 by Mark Greenstreet and are made available under the terms of the Creative Commons
Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

5

http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#nth-2
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/2/src/hw2_tests.erl
http://creativecommons.org/licenses/by/4.0/

2> W = wtree:create(8).
[<0.63,0>,<0.64,0>,<0.65,0>,<0.66,0>,<0.67,0>,<0.68,0>,<0.69,0>,<0.70,0>]
3> R = [X-1 || X <- misc:rlist(20, 11)].
[1,2,1,6,5,8,0,9,4,10,1,10,10,2,9,0,9,1,8,1]
4> workers:update(W, src, misc:cut(R, W)).
ok
5> workers:retrieve(W, src).
[[1,2],[1,6],[5,8],[0,9],[4,10,1],[10,10,2],[9,0,9],[1,8,1]].
% The previous line shows how R was distributed over the workers of W.
6> hw2:moment_scan(W, src, dst, 2, 5.0). % cumulative variance
14.55
7> hw2:moment(R, 2, 5.0).
14.55 % good, they agree
8> R2 = workers:retrieve(W, dst).
[[16.0,12.5], % the segment on Worker 0
[13.666666666666666,10.5], % the segment on Worker 1
[8.4,8.5], % the segment on Worker 2
[10.857142857142858,11.5], % the segment on Worker 3
[10.333333333333334,11.8,12.181818181818182], % the segment on Worker 4
[13.25,14.153846153846153,13.785714285714286], % the segment on Worker 5
[13.933333333333334,14.625,14.705882352941176], % the segment on Worker 6
[14.777777777777779,14.473684210526315,14.55]] % the segment on Worker 7

9> hw2:close(lists:flatten(R2), hw2:moment_fold(R, 2, 5)).
true % Yay!

Figure 2: moment_scan example

6

