
CpSc 418 Homework 1 Due: Jan. 17, 2018, 11:59pm
Early Bird: Jan. 15, 2018, 11:59pm

56 points.

Please submit your solution using the handin program. Submit your solution as
cs418 hw1

Your submission should consist of three files:

• hw1.erl: Erlang source code for the coding parts your solution.

• hw1.pdf PDF for the written response parts of your solution and the plots.

• hw1_tests.erl: EUnit tests for your solution.

Templates for hw1.erl and hw1_tests.erl are available at
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/1/code.html.

The tests in hw1_tests.erl are not exhaustive. If your code doesn’t work with these, it will almost certainly
have problems with the test cases used for grading. The actual grading will include other test cases as well.

Please submit code that compiles without errors or warnings. If your code does not compile, we might
give you zero points on all of the programming problems. If we fix your code to make it compile, we will
take off lots of points for that service. If your code generates compiler warnings, we will take off points for
that as well, but not as many as for code that doesn’t compile successfully.

We will take off points for code that prints results unless we specifically asked for print-out. For this
assignment, the functions you write should return the specified values, but they should not print anything
to stdout. Using lists:format when debugging is great, but you need to delete or comment-out such calls
before submitting your solution. Printing an error message to stdout when your function is called with
invalid arguments is acceptable but not required. Your code must fail with some kind of error when called
with invalid arguments.

1. f_to_c (15 points)
I was visiting my dad in Bellingham and he said that it was 45 degrees outside – “broiling hot!”, I
thought. But it was not.
It turns out that they use an arcane temperature system called “Fahrenheit”. We can convert from
Fahrenheit temperatures to the more sensible Celsius measure with the formula:

CelsiusTemp = (5/9) ∗ (FahrenheitTemp− 32)

(a) Convert one temperature (3 points) Write a function, f_to_c1(F) that takes an argument F, a
temperature in Fahrenheit as an Erlang number (i.e. integer or float) and returns the corresponding
Celsius temperature. For example,

f_to_c1(68.0) -> 20.0.
Note: this part of the problem asks for you to call the function f_to_c1 – make sure you remember
the ‘1’ at the end. That’s because I’ll ask you to write a more general version in question 1b.
Your solution needs to include f_to_c1 for this question and f_to_c for question 1b.

(b) Convert lists of temperatures (5 points) Write a function, f_to_c(F) that is a generalization of
f_to_c1 in the following way:

• If F is a number, it should be interpreted as temperature in Fahrenheit and f_to_c(F) should
return the corresponding temperature in Celsius. Example, f_to_c1(68.0) -> 20.0.

• If F is a list of numbers, f_to_c(F) should return a list, C, where each element of C is the
Celsius equivalent of the corresponding element of F. Example,

1

http://erlang.org/doc/apps/eunit/chapter.html
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/1/src/hw1.erl
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/1/src/hw1_tests.erl
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/1/code.html
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/1/src/hw1_tests.erl
http://erlang.org/doc/man/io.html#format-2


f_to_c([-50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50]) ->
[-45.5, -40.0, -34.4, -28.8, -23.3, -17.7, -12.2, -6.6, -1.1, 4.4, 10.0]

• If F is a nested-list of numbers, your function can either fail, or it can return a corresponding
nested lists of converted temperatures. For example,
f_to_c([-50, [-40, -30, [], -20, [-10, 0], 10], 20, [30], 40, 50]).

could fail (i.e. throw an error) or it can return
[-45.5, [-40.0, -34.4, [], -28.8, [-23.3, -17.7], -12.2], -6.6, [-1.1], 4.4, 10.0]

Question 1c asks you which one you chose, and why.
(c) Explain your design (2 points) If F is a nested-list of numbers, for example

F = [-50, [-40, -30, [], -20, [-10, 0], 10], 20, [30], 40, 50],
does your implementation return the corresponding nested-lists of converted temperatures, or
does it throw an error? Give a short (one or two sentence) explanation of why you chose the
implementation that you did.

(d) Efficiency (3 points) Your implementation of f_to_c should run in linear time. Use time_it:t/1
from the course library to measure the run time for your implementation with lists of length
1,000, 10,000, 100,000, and 1,000,000. For consistent results, you should run your tests on
bowen.ugrad.cs.ubc.ca – of course, you are welcome to write and debug your code on any
machine you like. time_it:t/1 reports the mean and standard-deviation for multiple runs, with a
total runtime of about one second. For lists with 1,000,000 or fewer elements, your implementation
of f_to_c should run in under one second.
You can use the function misc:rlist to generate random input lists. You should generate each
random list before calling time_it:t/1 – for example,

N = SomeBigNumber,
RandomList = [X - 50 || X <- misc:rlist(N, 100.0)],
TimingData = time_it:t(fun() -> f_to_c(RandomList) end),
{mean, Mean} = lists:keyfind(mean, 1, TimingData),
{std, StandardDeviation} = lists:keyfind(std, 1, TimingData),
io:format("N=~7b, mean time = ~10.3e (seconds), standard deviation = ~10.3e (seconds)~n",

[N, Mean, StandardDeviation]).

(e) Tests (2 points) Add some test cases for f_to_c to your copy of hw1_tests.erl. Make sure that
you cover the corner cases such as f_to_c(F) where F is the empty list, of where F is neither a
number nor a list, etc.
Full credit will be given for any reasonable set of tests. We will also implement a more relaxed
collaboration policy just for hw1_tests.erl. If you collaborate with others, you can jointly
write one hw1_tests.erl and all share it. Of course, everyone in your collaboration group
must submit a copy of the file, and you each must clearly state who your collaborators were in a
comment within the first 5 lines of your hw1_tests.erl file.

2. linmap (7 points)
The function f_to_c is a special case of a linear mapping: each element, X, of the input list is replaced
with A ∗X + B in the result list.

(a) Implement linmap(A, B, X) (3 points)

• If X is an Erlang number, then linmap should return A*X + B.
• If X is a list of Erlang numbers, then linmap should return a list where each element of the

return list is linear mapping for the corresponding element of the input list. For example,
linmap(2.0, -3.0, [0, 1, 2, 3, 42]) -> [-3.0, -1.0, 1.0, 3.0, 81.0].

2

https://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/time_it.html#t-1
https://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/time_it.html#t-1
https://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#rlist-2
https://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/time_it.html#t-1


Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

10

20

30

40

Figure 1: Daily precipitation in Vancouver in 2017

• If X is a nested list of Erlang numbers, then linmap can fail (i.e. throw an error) or return
the corresponding nested list of the linear mappings for each number in the input – just like
in question 1b.

(b) Implement c_to_f(CelsiusTemperature) (2 points)
That converts Celsius temperatures to their Fahrenheit equivalents, and handles lists as for
f_to_c. Your implementation must use linmap.

(c) Test cases and efficiency (2 points). Add test cases for linmap and c_to_f to hw1_tests.erl.
Your implementation of linmap (and therefore c_to_f) should run in linear time – we will check
the execution time.

3. How wet is Vancouver? (14 points)
The file

http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/1/src/rain.erl
gives daily precipitation (in millimeters) for Vancouver in 2017. The function rain:plot(Filename)
creates a SVG file that can be displayed to produce a plot like the one shown in Figure 1. Filename
should be a string and you probably want it to end with .svg. On the CS department linux machines,
the command

display file.svg
will create a window and display image described in the svg file.
The daily precipitation data produces a rather jagged plot. This question and the next one examine
how we can smooth the data to make it easier to for a human understand the plot.
For this problem, you will write a function simple_smooth that computes a weighted average of the
value for each element of a list with the the element just before and the element just after. In more
detail, let

SmoothData = simple_smooth(RawData).
For 1 < I < length(RawData), SmoothData should satisfy

lists:nth(I, SmoothData) = 1
4*lists:nth(I-1, RawData)

+ 1
2*lists:nth(I, RawData)

+ 1
4*lists:nth(I+1, RawData).

3

http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/1/src/rain.erl
https://www.w3.org/TR/SVG/
http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#nth-2


This is amathematical definition of what the return result should satisfy. Do not implement simple_smooth
with all those calls to lists:nth or you’ll end up with a quadratic time implementation and lose a bunch
of points.
We need to take care of the end cases as well. If RawData is an empty list or a list of a single element,
simple_smooth should just return RawData. For lists of two or more elements, the first and last values
of SmoothData should satisfy

lists:nth(1, SmoothData) = 3
4*lists:nth(1, RawData)

+ 1
4*lists:nth(2, RawData);

lists:nth(N, SmoothData) = 1
4*lists:nth(N-1, RawData)

+ 3
4*lists:last(RawData).

where N = length(RawData). This means that we compute the first element of SmoothData as if
the (non-existent) 0th element of RawData were the same as the first element of RawData. Likewise, we
compute the last element of SmoothData as if the (non-existent) N + 1st element of RawData were the
same as the N th element.
Here are a few examples:

simple_smooth([]) -> [];
simple_smooth([123.4]) -> [123.4];
simple_smooth([1,1,2,3,5,8]) -> [1.0,1.25,2.0,3.25,5.25,7.25]

(a) (8 points) Implement simple_smooth(RawData).
(b) (2 points) Plot the smoothed precipitation graph and include the plot in the hw1.pdf file that you

submit. To get the data for the precipitation graph in figure 1, use the function rain:daily().
This function returns a list of {X,Y} pairs. The X value is the day of the year, 1 ≤ X ≤ 365. The
Y value is the total precipitation (in millimeters) on that day. Use your simple_smooth function
to create a smoothed version of the data.
To plot the data, you can use the function rain:plot2(FileName, Data). This function produces
an SVG file with the name given by FileName. Data should be a list of X,Y tuples where X is
the day of the year, and Y is the smoothed precipitation for that day. The plot generated by
rain:plot2 shows the original data in red and the smoothed data in blue.

(c) (4 points) Test cases and efficiency. Add test cases for simple_smooth hw1_tests.erl. Your test
cases should include corner cases. Your function should fail (i.e. throw an error) if RawData is not
a list of numbers. You can explicitly throw the error, or it can be thrown by the Erlang runtime
because your code attempts an illegal operation – either is OK. It is not acceptable to return
some value if RawData is not a list of numbers.
Your implementation of simple_smooth should run in linear time – we will check the execution
time for lists much larger than one-year of rain data. Your implementation should run in less than
one second for an input list with 100,000 elements. Use time_it:t/1 to check the execution time.

4. Convolving in the rain (20 points)
The smoothing function in question 3 was nice, but we can do better. A generalization of this approach
is called convolution. The idea is that for the Ith value of Data, we will compute a weighted average of
the Ith value itself and the M values before and after the Ith value. The set of weights for the average
is called the convolution kernel. The formula for the convolution is:

SmoothData[I] =
M∑

J=−M

Kernel[J ] ∗ Data[I − J ]

4

http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#last-1
https://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/time_it.html#t-1


As in question 3, we will use Data[1] when I − J < 0, and Data[N ] when I + J > N , where N is the
number of elements in Data.
Of course, we are going to do this in Erlang. You will write a function,

conv(Kernel, Data) -> Smooth.
Where Kernel and Data are lists of numbers. The length of Kernel must be an odd number – in other
words 2M + 1 = lengthKernel. Smooth is a list of numbers with the same length as Data. Smooth is
the list where for all 1 ≤ I ≤ N ,

lists:nth(I, Smooth) =
M∑

J=−M

lists:nth(M+1+J, Kernel) * fetch(I-J, Data).

fetch(I, Data) when is_integer(I), 1 =< I, I =< length(Data) ->
lists:nth(I, Data);

fetch(I, Data) when is_integer(I), I < 1 -> hd(Data);
fetch(I, Data) when is_integer(I), I > length(Data) -> lists:last(Data).

As in question 3, this is a mathematical definition of what the return result of conv should satisfy.
Don’t write an implementation with all of these calls to lists:nth – it will be way too slow and you will
lose points on the performance tests.

(a) (12 points) Implement conv(Kernel, Data).
(b) (2 points) Plot the smoothed precipitation graph and include the plot in the hw1.pdf file that

you submit as your solution. To get the data for the precipitation graph in figure 1, use the
function rain:daily() as described in question 3. For the Kernel, use gauss_kernel(3) from
the hw1.erl template file. This is a Gaussian smoothing kernel with a standard deviation of
about ±3 – it means the smoothing kernel is roughly a weekly average.
To plot the data, you can use the function rain:plot2(FileName, Data) as described in ques-
tion 3.

(c) (4 points) Run-time analysis
What is the O run-time for your implementation of conv. Your answer should be in terms of
M , the kernel size, and N , the number of elements in Data. Give a short (one to three sentence)
justification for your answer.

(d) (2 points) Run-time measurement
Make a few measurements (10 to 20 should be enough but more are fine) varying the size of
Kernel and the number of element in Data. Do the measurements match your analysis?

(e) (2 points) Test cases.
Be sure to add test cases to hw1_tests.erl. We will test your code, you should to.

Why?
This is a follow-up to PIKA 1 to make sure that everyone is confident programming in Erlang. Often, people
who are new to functional programming find that they miss their loops. The questions in this assignment
require various forms of traversing data structures, obviously without loops. They are arranged roughly
in an order from simple programming patterns to some more general ones. These questions also introduce
examples such as convolution that we will revisit in the term.

Question 1: This is one of the simplest patterns: a map. Each element of the input list is mapped to a
new value for the result list. The function is overloaded to work on numbers or lists. This should give
you some experience with pattern matching.

5

http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#nth-2
http://erlang.org/doc/man/lists.html#last-1
http://erlang.org/doc/man/lists.html#nth-2
http://www.ugrad.cs.ubc.ca/~cs418/2017-2/hw/1/src/hw1.erl


Question 2: Linear maps are a common computation – the f_to_c function was one example of such a
map. With linmap, we replaced the hard-coded constants of 5/9 and 32 that were used in f_to_c
with parameters.
The linmap function will come up again when we study GPUs and CUDA. The people who write CUDA
books like the BLAS function saxpy – that’s just linmap wrapped up in a bunch of contorted acronyms.
“BLAS” stands for “basic linear algebra subprograms” and saxpy stands for “single-precision codea*x
plus y”. “Linear map” seems easier to say and remember. By giving an example here, hopefully the
arcane names of BLAS functions will be a bit less intimidating.

Question 3: This generalizes the map operations of the first two problems to a computation that involves
adjacent elements of a list. A common hurdle for people who use languages with loops, is “How do I
keep track of what comes before and after the current element when writing my recursive function?”.
Imperative languages such a C and Java allow any iteration of the loop to access any element of an
array. On the one hand, this can seem convenient. On the other hand, it’s a common cause of errors
– programmers often don’t think about what information they are using from previous iterations to
perform the current iteration, and that leads to errors in the first few iterations or the last few.
With functional programming, you must identify what values you will use from previous iterations.
You need to pass them along as parameters to your recursive function. On the one hand, this can seem
like annoying “clutter” in the code. On the other hand, making the dependencies explicit can help
avoid errors.
This class is about parallel computing. So, the imperative vs. functional styles isn’t the central point –
except it is. For parallel computing, we need to divide the computation between processes that execute
in parallel. Communication is expensive. Any idea that any process can access any value will collide
with the reality of real parallel computers. The functional style has us thinking about what values are
needed where from the very beginning. It’s not the only way to write parallel code, but it’s a good
place to start.
The simple_smooth function traverses the Data list and it has special cases at the beginning and end.
I found it helpful to write a simple_smooth as a wrapper function that handles the special cases for
short-lists and then calls a helper for the main recursive computation. This is a common pattern when
writing functional code.

Question 4: This question generalizes the smoothing problem from question 3. In this case, you have a
nested recursion: conv(Kernel, Data) needs to traverse Data, and for each value of Data it needs to
traverse the list Kernel. As in q:wet, there are special cases at the beginning and end of Data, but
for conv, the special cases depend on the length of Kernel.
As with question 2, this question was also inspired by what we will do with CUDA. The previous two
offerings of this course have included implementing convolution in CUDA. We might have that again
this term. I’m introducing the idea here.

The Library, Errors, Guards, and other good stuff
The CPSC 418 Erlang Library: your code must run on the CS department linux machines. Some of
the functions used in this assignment such as time_it:t/1 and plotting functions called by rain:plot and
rain:plot2 are from the course library. To access this library from the CS department machines, give the
following command in the Erlang shell:

1> code:add_path("/home/c/cs418/resources/erl").

You can also set the path from the command line when you start Erlang. I’ve included the following in my
.bashrc so that I don’t have to set the code path manually each time I start Erlang:

6

https://sanblas-islands.com
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/time_it.html#t-1
http://erlang.org/doc/man/code.html#add_path-1


function erl { /usr/local/bin/erl erl -eval ’code:add_path("/Users/mrg/classes/cs418/2017-1/src/erl")’ "$@" }

See http://erlang.org/doc/man/erl.html for a more detailed description of the erl command and the
options it takes.

If you are running Erlang on your own computer, you can get a copy of the course library from
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/erl.tgz

Unpack it in a directory of your choice, and use code:add_path as described above to use it. Changes may
be made to the library to add features or fix bugs as the term progresses. I try to minimize the disruption
and will announce any such changes. I do plan to modify the plot and svg modules – they are both very
new, and I’ll want to add some more features for subsequent homework assignments. I’d like to add edoc
comments to the source so that the plot and svg modules will be included in the on-line documentation
for the course library. Currently, they lack documentation – you can use them by calling rain.plot or
rain.plot2 as described in questions 3 and 4. Or, you can be brave and look at the code and figure out
how to use it. If you’re brave, be warned that I reserve the right to change anything that isn’t documented!
In that case, diff is your friend.

Compiler Errors: if your code doesn’t compile, it is likely that you will get a zero on the assignment.
Please do not submit code that does not compile successfully. After grading all assignments that compile
successfully, we might look at some of the ones that don’t. This is entirely up to the discretion of the
instructors and TAs. If you have half-written code that doesn’t compile, please comment it out or delete it.

Compiler Warnings: your code should compile without warnings. In my experience, most of the Erlang
compiler warnings point to real problems. For example, if the compiler complains about an unused variable,
that often means I made a typo later in the function and referred to the wrong variable, and ended up not
using the one I wanted. Of course, the “base case” in recursive function often has unused parameters – use
a _ to mark these as unused. Other warnings such as functions that are defined but not used, the wrong
number of arguments to an io:format call, etc., generally point to real mistakes in the code. We will take off
points for compiler warnings.

Printing to stdout: please don’t unless we specifically ask you to. If you include a short error message
when throwing an error, that’s fine, but not required. If you print anything for a case with normal execution
when no printing was specified, we will take off points.

Guards: in general, guards are a good idea. If you use guards, then your code will tend to fail close to
the actual error, and that makes debugging easier. Guards also make your intentions and assumptions part
of the code. Documenting your assumptions in this way makes it much easier if someone else needs to work
with your code, or if you need to work with your code a few months or a few years after you originally wrote
it. There are some cases where adding guards would cause the code to run much slower. In those cases, it
can be reasonable to use comments instead of guards. Here are a few rules for adding guards:

• If you need the guard to write easy-to-read patterns, use the guard.

• If adding the guard makes your code easier to read (and doesn’t have a significant run-time penalty),
use the guard.

• If a function is an “entry point” into your code (e.g. and exported function) it’s good to have your
assumptions about arguments clearly stated. If you can do this with guards, that is great.

• Adding lots of little guards to every helper function can clutter your code. Write the code that you
would want others to write if you are going to read it.

• In some cases (discussed below), guards can cause a severe performance penalty. In that case, it’s
better to use a wrapper function so you can test the guards once and then go on from there, or to use
comments. Comment don’t slow down the code.

The rest of this discussion of guards is an example showing how a poorly considered guard can change
an O(N) time algorithm to O(N2). It does this by calling length in a guard – length(List) take time
that is linear in the length of List. My example for guards that make for terribly slow code is a function
allLess(L1, L2) that is a check that all elements of L1 are less than the corresponding elements of L2.

7

http://erlang.org/doc/man/code.html#add_path-1
http://erlang.org/doc/man/erl.html
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/erl.tgz
http://erlang.org/doc/man/code.html#add_path-1
http://erlang.org/doc/apps/edoc/chapter.html
https://www.unix.com/man-page/Linux/1/diff/
http://erlang.org/doc/man/io.html#format-2


allLess([], []) -> true; allLess([H1 | T1], [H2 | T2])
when is_number(H1), is_number(H2),

is_list(T1), is_list(T2), length(T1) == length(T2) ->
(H1 < H2) andalso allLess(T1, T2).

I tried allLess(lists:seq(0,999), lists:seq(1,1000)). Using time_it:t, it takes about 1.4ms (on my laptop)
to execute the call to allLess. If I change the guard to:

when īs_number(H1), is_number(H2)
Then it takes about 14µs – it’s 100 times faster. That’s because the function length traverses the list and
takes time that is linear with the list length. Because the guard is invoked for each recursive call to allLess,
the guard changes an O(N) computation to O(N2). In cases like this, it’s fine to use the simpler guard. If
you call allLess with lists of different lengths, this means you’ll get an error message showing a call that is
different than the one you originally made – it’s the call that happened after a bunch of recursive calls, and
that can make debugging a little harder – or a lot harder, depending on the details.

A common case for omitting guards occurs with tail-recursive functions. We often write a wrapper
function that initializes the “accumulator” and then calls the tail-recursive code. We export the wrapper,
but the tail-recursive part is not exported because the user doesn’t need to know the details of the tail-
recursive implementation. In this case, it makes sense to declare the guards for the wrapper function. If
those guarantee the guards for the tail-recursive code, and the tail recursive code can only be called from
inside its module, then we can omit the guards for the tail-recursive version. This way, the guards get
checked once, but hold for all of the recursive calls. Doing this gives us the robustness of guard checking
and the speed of tail recursion.

Quick review question: is allLess tail recursive?
A remark for those who are really into analyzing the code. The behaviour of

allLess([1], [0, 0])
changes with the guard. The call to allLess fails with

** exception error: no function clause matching
hw1:allLess([1],[0,0]) (hw1.erl, line 89)

when I use the version with the guards for T1 and T2. When those guards are omitted, allLess returns
false.

Unless otherwise noted or cited, the questions and other material in this homework problem set is
copyright 2018 by Mark Greenstreet and are made available under the terms of the Creative Commons
Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

8

http://erlang.org/doc/man/lists.html#seq-2
http://erlang.org/doc/man/lists.html#seq-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/time_it.html#t-1
http://creativecommons.org/licenses/by/4.0/

