
Name & Student Number:

1. (19 points) CUDA Reduce Figure ?? provides code implementing a reduce problem in CUDA: Store
into vector y the m largest values in the vector x (whose length is n). For your convenience, a pure
CPU version has also been supplied in figure ??. In answering the questions below, you may assume:

• The function reduce kernel() is launched with gridDim = (1, 1, 1) and blockDim
= (block size, 1, 1).

• The value of block size is a power of 2 and 32 ≤ block size ≤ 1024.
• The input array x contains n positive floating point numbers and the output array y has been

allocated of size m but has not been initialized.
• The values of n, m, block size and the constant SIZE have been chosen so that there are no

array indexing or out of memory errors.

For each of the questions below, briefly justify your answer in a sentence. Answers which do not
include a brief justification may not receive full marks.

(a) (2 points) Consider the line shared[j*b + i] = 0.0; in section 1 of reduce kernel().
Will this memory access cause a bank conflict? Briefly explain why or why not.

No bank conflict. The threads of a warp will have 32 consecutive values for i and the
same values for j and b. Thus, they will access 32 consecutive addresses in the shared
memory, and each access goes to a different bank.

(b) (2 points) Consider the line float curr = x[elem]; in section 2 of reduce kernel().
Will this memory access cause a bank conflict? Briefly explain why or why not.

No bank conflict because x is stored in global memory, not shared memory.

(c) (2 points) Consider the line float curr = x[elem]; in section 2 of reduce kernel().
Will this memory access be coalesced? Briefly explain why or why not.

The references will be coalesced. elem = k*b + i; b = blockDim.x is a mul-
tiple of of 32; and the values of i are consecutive for the threads of a warp.

(d) (2 points) Consider section 2 of reduce kernel(). Give one reason why it is a good idea to
use shared memory to store the array shared[] for this section of the code. Answers which
give more than one reason will receive zero.
Would this code still work if shared[] were in global memory?

Shared memory is the best choice because it can be indexed (unlike registers). The
code would work if shared were in global memory, but it would be slower.

(e) (2 points) Consider section 3 of reduce kernel(). Give one different reason why it is
a good idea to use shared memory to store the array shared[] for this section of the code.
Answers which give more than one answer or which repeat the answer from the previous part
will receive zero.

Shared memory provides a fast (compared with global memory) mechanism for trans-
ferring values between threads in a block. We would need to use atomic operations
(slow) if global memory were used instead.

(f) (1 point) Would the code in section 3 still work if shared[] were in global memory?

No, the code could fail.
Explanation (not required for a solution): the code is not guaranteed to work because
the syncthreads() operation does not provide any guarantees about consistency
of global memory.

© 2018 by Mark Greenstreet & Ian M. Mitchell. 1



Name & Student Number:

(g) (3 points) Consider the line y[i] = shared[i*b]; in section 4 of reduce kernel().
Will either of these memory accesses cause a bank conflict? Briefly explain why or why not.

The accesses to shared[i*b] will all cause bank conflicts because b is a multiple
of 32 (an assumption from the problem statement).

(h) (3 points) Consider the line y[i] = shared[i*b]; in section 4 of reduce kernel().
Will either of these memory accesses be coalesced? Briefly explain why or why not.

The writes to y[i] will be coalesced because threads in the same warp will have
consecutive values for i.

(i) (2 points) Briefly explain why syncthreads() must be called at the start of section 4 of
reduce kernel().

If syncthreads() were not called, then the warp that reads float curr =
shared[other j*b + i + stride]; could perform the read before the other
warp writes that location in a previous iteration of the for(stride. . .) loop.

2. (20 points) Closest Point Figure ?? provides code implementing a basic version of a closest point
calculation, and figure ?? provides a tiled version of the same algorithm. You may assume that nc�
np� 1.

(a) (3 points) Assume that the data is stored column major. The code currently stores each input
data point in d points as a column, so d points is an array with DIM rows and np columns.
A similar layout is used for d clusters. Is this a good choice for arranging the data in
closest basic kernel(), or should we instead have store each point as a row in these
arrays? Briefly explain your reasoning.

It would be better to store each point as a row. The majority of memory references are
in the inner loop (the d loop) for

// Then consider the remaining cluster points.
The reference to

d clusters[IDX2F(d,j,nc,DIM)]
is the same for all threads of a warp, so the row vs. column indexing isn’t a big deal.
The reference to

d points[IDX2F(d,i,np,DIM)]
has consecutive values of i for the threads of a warp. We would like these to be
consecutive memory locations to allow the memory accesses to be coalesced. By the
assumption that the data is stored in column major order, we want i to be the row
address. This means that each point is should be a row.

(b) (3 points) Write down the line numbers of closest basic kernel()which contain a float-
ing point operation. Comparisons between floating point values count as a floating point opera-
tions, but integer operations and integer comparisons do not count. Multiply-adds which can be
fused count as one operation. How many total floating point operations does one thread perform?

line 20 (subtract, performed DIM times)
line 21 (fused mult-add, performed DIM times)
line 28 (subtract, performed (nc-1)*DIM times)
line 29 (fused mult-add, performed (nc-1)*DIM times)
line 31 (compare, performed nc-1 times)
total number of global memory accesses = 2*DIM + 2*(nc-1)*DIM + (nc-1)

= 2*nc*DIM + nc - 1

© 2018 by Mark Greenstreet & Ian M. Mitchell. 2



Name & Student Number:

(c) (3 points) Write down the line numbers of closest basic kernel() which contain a
global memory access. How many total global memory accesses does one thread perform?

line 20 (two reads, performed DIM times each)
line 28 (two reads, performed (nc-1)*DIM times each)
line 38 (one write, performed once)
total number of global memory accesses = 2*nc*DIM + 1.

(d) (1 point) What is the CGMA of closest basic kernel()? Your answer may depend on
nc, np and/or DIM.

CGMA = 2*nc*(DIM+1) - 1
2*nc*DIM + nc - 1

≈ DIM+1
DIM+ 1

2

, for large nc

≈ 1 + 1
2DIM , for “large enough” DIM

(e) (3 points) Write down the line numbers of closest tiled kernel()which contain a float-
ing point operation. Comparisons between floating point values count as a floating point opera-
tions, but integer operations and integer comparisons do not count. Multiply-adds which can be
fused count as one operation. How many total floating point operations does one thread perform?

line 19 (subtract, performed DIM times)
line 20 (fused mult-add, performed DIM times)
line 36 (subtract, performed (nc-1)*DIM times)
line 37 (fused mult-add, performed (nc-1)*DIM times)
line 39 (compare, performed nc-1 times)
total number of global memory accesses = 2*nc*DIM + nc - 1

(same as for closest basic kernel).

(f) (3 points) Write down the line numbers of closest tiled kernel() which contain a
global memory access. How many total global memory accesses does one thread perform?

line 13 (one read, performed DIM times)
line 19 (one read, performed DIM times)
line 30 (one read, performed ceil(nc/BLOCK SIZE)*DIM times)
line 47 (one write, performed once)
total number of global memory accesses = (ceil(nc/BLOCK SIZE)+2)*DIM +
1.

(g) (1 point) What is the CGMA of closest tiled kernel()? Your answer may depend on
nc, np, DIM, and/or BLOCK SIZE.

CGMA = 2*nc*DIM + nc - 1
(ceil(nc/BLOCK SIZE)+2)*DIM + 1

≈ 2*BLOCK SIZE*
(
1 + 1

DIM

)
, for large nc

≈ 2*BLOCK SIZE*, for “large enough” DIM

(h) (3 points) Consider the innermost loop (the loop over j) in closest tiled kernel(). Will
this code run faster if DIM is 2 or if DIM is 3? Briefly explain.

The inner-most loop is indexed by d, not j.
Either way, the version with the larger value for DIM will take longer because the

© 2018 by Mark Greenstreet & Ian M. Mitchell. 3



Name & Student Number:

d loop is performed more times. Note: the original intent was to have the DIM=3
loop be faster because of fewer bank-conflicts when accessing shared memory. BUT,
we’re using Fortran-inspired column major ordering, and DIM isn’t part of the index
calculation.

3. (18 points) Short answer questions.

(a) (4 points) Data Parallelism. We discussed the fact that GPUs are well suited to data parallel
problems, such as convolution or matrix-matrix multiplication. Give one architectural reason
why GPUs are better suited than traditional CPUs to matrix-matrix multiplication. Are there
any conditions under which a distributed message passing architecture (such as we explored
using Erlang) would be well-suited to matrix-matrix multiplication? If not, briefly explain why
not. If so, specify the condition(s).

• GPUs are better that CPUs because they amortize the overhead of instruction fetch,
decode, and pipeline control across many execution units. Operations such as
matrix-multiplication and convolution work well in this context.
Other acceptable answers:
– GPUs have higher main-memory bandwidth than CPUs because GDDR (and

now HBM2) is faster that DDR.
– GPUs have more floating point units than CPUs.

• Message-passing architectures work well for problems where the data size is too
big to fit on a single GPU or single CPU. GPUs have very small amounts of mem-
ory available (e.g. 12-16GB for a GPU).

(b) (3 points) Lots of Threads. One key to achieving high performance on GPUs is to ensure that
kernels have many independent threads: Dozens of threads per core / SP. Give one reason why it
is beneficial to have so many threads per core in a GPU. Give one reason why it is also beneficial
to have several threads / processes available for each core of a modern CPU, and one reason why
it is not necessary to have nearly as many threads / processes for the CPU cores as for the GPU
cores to achieve reasonable efficiency. Answers which give more than one of each will receive
zero.

• SP pipelines are very deep without bypasses. Having a large pool of threads allows
the thread scheduler to find threads that can issue instructions while instructions
from other threads are working their way through the pipeline.

• CPUs also benefit from multiple threads so that one thread can execute while an-
other is blocked due to a cache miss.
Other valid answers include:
– Multithreading reduces performance loss from branch mispredication.
– Multithreading can utilize the multiple functional units of a superscalar proces-

sor more effectively than single-threaded execution because instructions from
different threads are independent of each other.

• CPUs don’t need as many threads per execution unit as GPUs because the CPU
pipelines are not as deep.

(c) (4 points) Shared Memory. We ran in to the term “shared memory” twice in the course: once as
a type of parallel architecture (as opposed to message passing) and once as a specialized form of
storage on the GPUs. Consider the kernel min kernel tree() in figure ??, which uses the

© 2018 by Mark Greenstreet & Ian M. Mitchell. 4



Name & Student Number:

GPU’s shared memory. Does it use a shared memory architecture? Briefly explain your answer.
Now consider the kernel min kernel atomic() in figure ??, which does not use the GPU’s
shared memory. Does it use a shared memory architecture? Briefly explain.

• min kernel tree uses a shared memory architecture, the SPs within an SM
access shared memory banks, very much like the “ancient shared memory” archi-
tectures from the lecture slides that introduced shared memory machines.

• min kernel atomic uses a shared memory architecture: the global memory is
shared – in particular for the atomic read-modify-write operations performed on
*min.

(d) (3 points) Map-Reduce and Moments. Assume that we store a very large collection of data
values {xi}n−1

i=0 distributed across a large number of workers in a data center. The values are
stored as (Key1, Value1) pairs such that Key1 is i and Value1 is xi. Further assume that all of
the workers know the expected value of the data set E[x]. We would like to compute the central
moments {µk}kmax

k=2 where

µk ≈
∑n−1

i=0 (xi − E[X])k

n
.

This calculation is the same problem explored in Homeworks 2 (Erlang) and 5 (CUDA). We
would like to store the results as (Key3, Value3) pairs where Key3 is k and Value3 is µk. Is
it possible to perform this computation using the Map-Reduce programming pattern (ignore
efficiency considerations)?

� yes 2 no (1 point)
If yes, explain what (Key2, Value2) representation you would use. If not, briefly explain why not
(2 points).

Key2=k inspired by Key3. This means we could easily extend the code to handle
multiple values for k in a single Map-Reduce run.

Value2={N, Sum} where N is the number of values for this map worker, and Sum is
the sum of these values, minus E[X] raised to the kth power.

This representation allows the reduce worker to compute final sum and the total for n.

(e) (3 points) BLAS and Complexity. You have a computational problem and have managed to
write it in two different forms (assume all matrices are n× n and vectors are of length n):

• A series of n matrix-vector multiplications (Level-2 BLAS).
• A single matrix-matrix multiplication (Level-3 BLAS) plus n vector-vector saxpy opera-

tions (Level-1 BLAS).

Assuming that n is small enough that all the matrices and vectors can be stored in the GPU’s
global memory, which version would run faster? Briefly explain your answer.

The second approach will be faster.
In the first approach, a vector and matrix will be loaded from global memory with each
of the n matrix-vector multiplications. Each matrix-element is used once. This yields
a CGMA between 1 and 2, with n3 total memory accesses.
In the second approach, the matrix-matrix multiplication will be done with blocks.
As with the first method, O(n3) floating point operations will be performed, but the
CGMA will be large enough to fully utilize the GPU. The saxpy operations are lousy
for CGMA, but there are only n2 memory accesses instead of n3.

© 2018 by Mark Greenstreet & Ian M. Mitchell. 5



Name & Student Number:

(f) (1 point) , Take three, slow, deep breaths. Relax. Write down one sentence that is positive
about anything.

I’ve enjoyed the class this term – a big thank-you to everyone taking it, to our TAs, and
to Ian.

4. Performance Modeling (10 points) Give one example for how each kind of performance loss listed
below can occur in a CUDA program, or give a short (one or two sentence) explanation of why it
cannot occur.

(a) (2 points): Communication.
GPUs communicate using memory, and memory accesses are slow. Threads in the
same block can communicate using shared memory, which is fairly fast. Communica-
tion between different blocks requires using global memory – either by using atomics
or by launching multiple kernels. These global memory accesses introduce commu-
nication overhead that can be very large. Likewise, communication between the CPU
and GPU involves slow, global-memory accesses.

(b) (2 points): Synchronization.
Calls to syncthreads() incur synchronization overhead.
Other valid answers:

• Atomics.
• Using multiple kernels to provide communication between blocks. All threads in

one kernel must complete execution before the next kernel is launched.

(c) (2 points): Extra computation.
Anytime a value is recomputed by multiple threads. For example, in the reduce kernel,
all threads compute num elem at line 7.
Another valid answer:

• An algorithm that runs well on a GPU may perform more operations than a se-
quential algorithm (or algorithm for a different parallel architecture). The imple-
mentation of scan using O(N logN) operations instead of O(N) for sequential
or many parallel implementations is an example. Using bitonic sort with an extra
O(NP log2 P ) operations is another example.

(d) (2 points): Resource contention.
Bank conflicts when accessing shared memory. Other acceptable answers:

• Other valid answer include that some GPUs have a small number of double preci-
sion floating point units per SM. If a kernel uses lots of double precision operations,
there will be resource contention. Another example is global memory bandwidth
– with blocks executing on all SM’s, they can generate more global memory traffic
than the memory can support and warps will block waiting for memory accesses.

• Atomic operations such as atomic add can cause contention for locks. Note:
the textbook and CUDA documentation have descriptions that make it reasonable
to assume that memory is accessed by each thread, one-at-a-time, for atomics;
therefore, we are giving full credit for this answer. On the other hand, nVidia’s
GPU architects know what they are doing, and implementing reduce networks
in hardware has been done for several decades. Kristen just coded up an example
using atomic addwhile we’re grading the exams (thanks, Kristian!) and showed
that atomics introduce a small amount of overhead, but not very much.

© 2018 by Mark Greenstreet & Ian M. Mitchell. 6



Name & Student Number:

(e) (2 points): Idle processors.

Branch divergence. For example, when only some SPs are active during a reduce.
Other acceptable answers:

• If a SM doesn’t have enough warps, then the SM will be idle on cycles that the
warp-schedule cannot issue an instruction.

• If a grid doesn’t have enough blocks, then some SMs will be idle. For example, if
a grid only has one block, then all but one of the SMs will be idle when that kernel
executes.

• If there is random variation in the execution time of blocks, then some SMs will
be idle at the end of a kernel’s execution

Hint: feel free to use example from code for other questions on this exam—but if you would rather
give your own example that is fine. Your examples should be short.

5. A Different Kind of Tiling (13 points) Many physical simulation problems are solved using finite
element methods (FEM). These methods model a physical region using a grid of points. A sequential
implementation of FEM involves a sequence of updates of the grid. Each update requires an update of
each grid point. We will assume that a single update of a grid-point takes unit time. Thus a sequential
implementation uses N time units to update a grid with N -points.

We will assume that we have P processors, a two-dimensional grid, and that the grid can be divided
into P “tiles” of size K × K. Note that this implies that N = PK2. To update a tile, a processor
sends four messages, one to each of the neighbouring tiles. Each message has K words. It takes time
λ+W to exchange messages of W words with a neighbour. Each processor can exchange messages
with only one neighbour at a time. You may also assume that computation and communication cannot
be overlapped. After receiving messages from its 4 neighbours, the processor updates the grid-points
for its tile using the sequential approach.

(a) (1 point) What is the time for the sequential algorithm to update a grid of N = 10, 240, 000
points? Hint: this is not a trick question, this is an easy question.

As stated in the problem description, N time units for a sequential algorithm with N
elements, so 10, 240, 000 time units.

(b) (1 point) What is K, if P = 256 and N = 10, 240, 000?

From the problem description N = PK2 so K =
√
N/P =

√
10, 240, 000/256 =√

40, 000 = 200.

(c) (2 points) What is time for the parallel algorithm to update a grid of N = 10, 240, 000 points
using P = 256 processors? Include both communication and computation time. Assume that
λ = 10, 000.

Computation time will be N/P = K2 = 40, 000 since the updates can proceed in
parallel. Each processor also needs to send four messages. Each message takes time
λ +K = 10, 000 + 200 = 10, 200, and the total communication time is 40,800. The
total (computation + communication) time is 80, 800.

(d) (1 point) What is the speed-up if N = 10, 240, 000, P = 256, and λ = 10, 000?

10, 240, 000/80, 800 ≈ 126.73

© 2018 by Mark Greenstreet & Ian M. Mitchell. 7



Name & Student Number:

We can amortize the communication cost if we use overlapping tiles. Let M be an integer – it’s the
number of rows or columns that each tile overlaps with each of its neighbouring tiles. To update a tile,
each processor sends four messages, one to each of the neigbouring tiles. Each message consists of
M(K +M − 1) words. After receiving messages from its 4 neighbours, the processor performs M
updates to its tile; thus, one step of the parallel algorithm counts as M steps of the sequential version.
For the first of the M updates, the processor works on a tile with (K+M −1)× (K+M −1) points,
for the second iteration, the processor works on a tile with (K +M − 2)× (K +M − 2) points. For
the ith of the M updates, the processor works on a tile with (K +M − i)× (K +M − i) points.

(e) (4 points) What is time for the parallel algorithm to perform M = 4 updates to a grid of N =
10, 240, 000 points using P = 256 processors? Include both communication and computation
time. Assume that λ = 10, 000.

Communication: Each message is λ+M(K+M−1) = 10, 000+(4)(200+4−1) =
10, 812, so total communication time is 43, 248.

Computation: M = 4 iterations, first one is (K +M − 1) = 200 + 4 − 1 = 2032,
second is 2022, third is 2012 and fourth is 2002 for a total of 162, 414.

Total: the total time for four updates is therefore 205, 662.

(f) (2 points) What is the speed-up if N = 10, 240, 000, P = 256, λ = 10, 000, and M = 4?

(4)(10, 240, 000)/205, 662 ≈ 199.16.

(g) (2 point) Does this method of overlapping tiles improve or degrade performance? Give a short
explanation for this improvement or degradation in terms of the kinds of overhead described
in Question ??, i.e. communication, synchronization, extra computation, resource contention,
and/or idle processors.

Using overlapping tiles improves performance. It introduces some extra computation
– neighbouring tiles compute the same values for points in their overlap regions. In
return for this slight increase in computation, the communication overhead is greatly
reduced. The net effect is a large improvement in efficiency.
Note: It is possible to get even higher efficiencies by usinng larger values of M , but I
wanted to keep the calculations simple for the exam.

© 2018 by Mark Greenstreet & Ian M. Mitchell. 8



Do not write your answer on this page—it will not be graded. You may find it convenient to tear this
page off when answering the questions. If you tear it off, you need not submit it with the rest of your exam.

1 __global__ void reduce_kernel(float *x, float *y, uint n, uint m) {
2

3 __shared__ float shared[SIZE];
4

5 uint i = threadIdx.x;
6 uint b = blockDim.x;
7 uint num_elem = ceil((double)n / (double)b);
8

9 // Section 1.
10 for(uint j = 0; j < m; j++)
11 shared[j*b + i] = 0.0f;
12

13 // Section 2.
14 for(uint k = 0; k < num_elem; k++) {
15 uint elem = k * b + i;
16 if(elem < n) {
17 float curr = x[elem];
18 for(uint j = 0; j < m; j++) {
19 float temp = shared[j*b + i];
20 if(curr > temp) {
21 shared[j*b + i] = curr;
22 curr = temp;
23 }
24 }
25 }
26 }
27

28 // Section 3.
29 for(uint stride = b / 2; stride >= 1; stride = stride>>1) {
30 __syncthreads();
31 if(i < stride) {
32 for(uint other_j = 0; other_j < m; other_j++) {
33 float curr = shared[other_j*b + i + stride];
34 for(uint j = 0; j < m; j++) {
35 float temp = shared[j*b + i];
36 if(curr > temp) {
37 shared[j*b + i] = curr;
38 curr = temp;
39 }
40 }
41 }
42 }
43 }
44

45 // Section 4.
46 __syncthreads();
47 if(i < m)
48 y[i] = shared[i*b];
49 }

Figure 1: CUDA code for the reduction problem for question ??.



Do not write your answer on this page—it will not be graded. You may find it convenient to tear this
page off when answering the questions. If you tear it off, you need not submit it with the rest of your exam.

1 void reduce_cpu(float *x, float *y, uint n, uint m) {
2

3 for(uint j = 0; j < m; j++)
4 y[j] = 0.0f;
5

6 for(uint i = 0; i < n; i++) {
7 float curr = x[i];
8 for(uint j = 0; j < m; j++) {
9 float temp = y[j];

10 if(curr > temp) {
11 y[j] = curr;
12 curr = temp;
13 }
14 }
15 }
16

17 }

Figure 2: CPU code which performs the same reduction as the CUDA code in figure ??.



Do not write your answer on this page—it will not be graded. You may find it convenient to tear this
page off when answering the questions. If you tear it off, you need not submit it with the rest of your exam.

1 // Fortran column major indexing. We don’t actually need the number
2 // of columns (n), but we’ll include it as an argument anyway for when
3 // we do C-style (row major) indexing.
4 #define IDX2F(i,j,m,n) (((j)*(m))+(i))
5

6 // For each element in d_points, identify the point in d_clusters
7 // which is closest. In case of a tie, identify the first.
8 __global__ void closest_basic_kernel(const float *d_clusters, const uint nc,
9 const float *d_points, const uint np,

10 uint *d_closest) {
11

12 // Assign a thread to each element of d_points.
13 const uint i = blockIdx.x * blockDim.x + threadIdx.x;
14

15 if(i < np) {
16 // Initialize with first cluster point.
17 float closest_dist2 = 0.0f;
18 uint closest_index = 0;
19 for(uint d = 0; d < DIM; d++) {
20 float diff = (d_points[IDX2F(d,i,np,DIM)] - d_clusters[IDX2F(d,0,nc,DIM)]);
21 closest_dist2 += diff * diff;
22 }
23

24 // Then consider the remaining cluster points.
25 for(uint j = 1; j < nc; j++) {
26 float dist2 = 0.0f;
27 for(uint d = 0; d < DIM; d++) {
28 float diff = (d_points[IDX2F(d,i,np,DIM)]-d_clusters[IDX2F(d,j,nc,DIM)]);
29 dist2 += diff * diff;
30 }
31 if(dist2 < closest_dist2) {
32 closest_dist2 = dist2;
33 closest_index = j;
34 }
35 }
36

37 // Write back the result.
38 d_closest[i] = closest_index;
39 }
40 }

Figure 3: Basic CUDA kernel for the closest point problem for question ??.



Do not write your answer on this page—it will not be graded. You may find it convenient to tear this
page off when answering the questions. If you tear it off, you need not submit it with the rest of your exam.

1 __global__ void closest_tiled_kernel(const float *d_clusters, const uint nc,
2 const float *d_points, const uint np,
3 uint *d_closest) {
4

5 // Index within the grid.
6 const uint ig = blockIdx.x * blockDim.x + threadIdx.x;
7 // Index within the block.
8 const uint ib = threadIdx.x;
9

10 __shared__ float sh_points[BLOCK_SIZE * DIM];
11 if(ig < np)
12 for(uint d = 0; d < DIM; d++)
13 sh_points[IDX2F(d,ib,BLOCK_SIZE,DIM)] = d_points[IDX2F(d,ig,np,DIM)];
14

15 // Initialize with first cluster point.
16 float closest_dist2 = 0.0f;
17 uint closest_index = 0;
18 for(uint d = 0; d < DIM; d++) {
19 float diff = (sh_points[IDX2F(d,ib,np,DIM)] - d_clusters[IDX2F(d,0,nc,DIM)]);
20 closest_dist2 += diff * diff;
21 }
22

23 __shared__ float sh_clusters[BLOCK_SIZE * DIM];
24 for(uint j_start = 1; j_start < nc; j_start += BLOCK_SIZE) { // +1BB for missing ’uint’
25 const uint j_last = min(BLOCK_SIZE, nc - j_start);
26

27 __syncthreads();
28 if(ib < j_last)
29 for(uint d = 0; d < DIM; d++)
30 sh_clusters[IDX2F(d,ib,BLOCK_SIZE,DIM)] = d_clusters[IDX2F(d,j_start+ib,np,DIM)];
31

32 __syncthreads();
33 for(uint j = 0; j < j_last; j++) {
34 float dist2 = 0.0f;
35 for(uint d = 0; d < DIM; d++) {
36 float diff = (sh_points[IDX2F(d,ib,np,DIM)] - sh_clusters[IDX2F(d,j,nc,DIM)]);
37 dist2 += diff * diff;
38 }
39 if(dist2 < closest_dist2) {
40 closest_dist2 = dist2;
41 closest_index = j_start + j;
42 }
43 }
44 }
45

46 if(ig < np)
47 d_closest[ig] = closest_index;
48 }

Figure 4: Tiled CUDA kernel for the closest point problem for question ??. The macro IDX2F() is defined
in figure ??.



Do not write your answers on this page—it will not be graded. You may find it convenient to tear this
page off when answering exam questions. If you tear it off, do not submit it with the rest of your exam.

1 __global__ void min_kernel_tree(int *x, const uint n, int *min) {
2

3 const uint i = threadIdx.x;
4

5 // Allocate shared memory to hold the partial results for this thread.
6 __shared__ double sh_min[BS];
7 // Initialize with first value assigned to this thread.
8 sh_min[i] = x[i];
9

10 // Examine the remaining values assigned to this thread.
11 for(uint j = i + GS; j < n; j += GS)
12 sh_min[i] = min(x[j],sh_min[i]);
13

14 // Perform the reduction tree.
15 for(uint stride = BS >> 1; stride >= 1; stride = stride >> 1) {
16 __syncthreads();
17 if(i < stride)
18 sh_min[i] = min(sh_min[i],sh_min[i + stride]);
19 }
20

21 // Copy the final result out of shared memory and back to global memory.
22 if(i == 0)
23 min[0] = sh_min[0];
24 }
25

26

27 __global__ void min_kernel_atomic(int *x, const uint n, int *min) {
28

29 const uint i = blockIdx.x * blockDim.x + threadIdx.x;
30

31 // Initialize with first value assigned to this thread.
32 int my_min = x[i];
33

34 // Examine the remaining values assigned to this thread.
35 for(uint j = i + GS; j < n; j += GS)
36 my_min = min(x[j], my_min);
37

38 // Combine results from different threads.
39 atomicMin(min, my_min);
40 }

Figure 5: Two kernels to determine the minimum of an array of integers for question ??.


