CPSC 418: Parallel Computing Winter 2016-2017 Term 2
Mini Assignment #2 (© 2017 by Ian M. Mitchell
Due 10:00am on January 13, 2017 in class.

Name:

Reduce & Scan

Student Number:

Complete your short answers on this sheet. Submit a hardcopy at the beginning of class.

1. Reduce vs Scan (5 points). Assume that we have some data (call it the input) distributed
over a collection of worker processes (call them the processes) and we wish to compute some
function of this data to produce some other data (call it the output). Our local parallel
computing guru has assured us that this function can be implemented with either a single
reduce or a single scan operation. Briefly describe what properties of the input, processes
and/or output would allow us to determine whether we should use a reduce or a scan.

2. Generalized reduce (10 points). As described in Lin & Snyder a generalized reduce is
described by four functions: init(), accum(), combine () and reduceGen(). Assume that
we have 1600 data elements to process and that we set up as balanced a tree as possible.

(a)

If we can give 100 data elements to each leaf process, what is the height of the tree
(which is also the maximum number of messages that need to be passed to get between
a leaf and the root)? What about if we can give only 60 data elements to each leaf
process?

Height for 100 / leaf: 60 / leaf:

In the 100 / leaf case, how many times are each of these functions called (over all
processes)?

init(): —— accum(): __ combine(): ___ reduceGen():

In the 60 / leaf case, how many times are each of these functions called (over all pro-
cesses)?

init(): _—— accum(): ___ combine(): ___ reduceGen():



3. Generalized scan (10 points). As described in Lin & Snyder a generalized scan is de-
scribed by four functions: init(), accum(), combine() and scanGen(). Assume that we
have 1600 data elements to process and that we set up as balanced a tree as possible.

(a) How many times are each of these functions called (over all processes) if we can give 100
data elements to each leaf process?

init(): —— accum(): __ combine(): ___ scanGen():

(b) How many times are each of these functions called (over all processes) if we can give just
60 data elements to each leaf process?

init(): — accum(): __ combine(): __ scanGen():



