
Industrial Strength, Parallel Model Checking

Mark Greenstreet

CpSc 418 – Mar. 31, 2017

The Big Five
A Parallel Algorithm for Model Checking
Implementing a Parallel Model Checker
Summary, Preview, & Review

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 1 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Mark’s Five Questions: 1–3
1 What problem does the paper address?

I Model checking of real problems in industry requires the combined
memory of many machines. Existing implementations of parallel
model checkers failed to successfully run on real examples. A
robust, distributed, parallel model checker is needed.

2 What is the key idea in the paper?
I Combine murϕ and Erlang.
I Use the existing murϕ code to implement the computationally

intensive part of the code.
I Use Erlang to handle the communication and coordination between

worker processes.
3 How do the authors validate their idea?

I They implemented a model checker.
I They performed experiments to identify robustness issues and

performance bottlenecks. They implemented solutions to these
problems.

I They used the PReach model checker on several benchmark
examples and some real designs from Intel.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 2 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Mark’s Five Questions: 4–5

1 Is the paper convincing?
I Yes: they showed that they could check properties of real designs.

They set new records for model-size for explicit-state model
checking.

I No: the run times for large examples can be several days.
I 20/20 hindsight: Definitely. With continued work, the performance

of PReach has been improved. Brad Bingham went on to show that
this explicit state approach could solve liveness verification
problems that other methods cannot.

2 Any other comments?
I PReach lacks a crash-recovery mechanism.
I PReach doesn’t take advantage of having multiple cores on a

single CPU: This would require revising the base murϕ code to
create shared state tables, etc.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 2 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Model Checking: the algorithm

initialState = . . .;
workList = queue(); // initially empty
knownStates = set(); // initially empty
workList.insert(initialState);
while len(workList) > 0:

s = workList.removeNext();
check s’ for mutual exclusion;
for s’ in next states(s):

if s’ not in knownStates:
add s’ to workList and knownStates;

How can we make this algorithm parallel?

Where does the code spend most of the time?

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Model Checking: the algorithm

initialState = . . .;
workList = queue(); // initially empty
knownStates = set(); // initially empty
workList.insert(initialState);
while len(workList) > 0:

s = workList.removeNext();
check s’ for mutual exclusion;
for s’ in next states(s):

if s’ not in knownStates:
add s’ to workList and knownStates;

How can we make this algorithm parallel?

Where does the code spend most of the time? next states(s)

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Model Checking: the algorithm

initialState = . . .;
workList = queue(); // initially empty
knownStates = set(); // initially empty
workList.insert(initialState);
while len(workList) > 0:

s = workList.removeNext();
check s’ for mutual exclusion;
for s’ in next states(s):

if s’ not in knownStates:
add s’ to workList and knownStates;

How can we make this algorithm parallel?

Where does the code spend most of the time? next states(s)

What are the dependencies?

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Model Checking: the algorithm

initialState = . . .;
workList = queue(); // initially empty
knownStates = set(); // initially empty
workList.insert(initialState);
while len(workList) > 0:

s = workList.removeNext();
check s’ for mutual exclusion;
for s’ in next states(s):

if s’ not in knownStates:
add s’ to workList and knownStates;

How can we make this algorithm parallel?

Where does the code spend most of the time? next states(s)

What are the dependencies?

I As written, the code is very sequential.
I BUT, the correcteness of the algorithm does not depend on the

order in which states are removed from workList.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Model Checking: the algorithm

initialState = . . .;
workList = queue(); // initially empty
knownStates = set(); // initially empty
workList.insert(initialState);
while len(workList) > 0:

s = workList.removeNext();
check s’ for mutual exclusion;
for s’ in next states(s):

if s’ not in knownStates:
add s’ to workList and knownStates;

How can we make this algorithm parallel?

Where does the code spend most of the time? next states(s)

What are the dependencies?

I As written, the code is very sequential.
I BUT, the correcteness of the algorithm does not depend on the

order in which states are removed from workList.

What uses most of the memory?

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Model Checking: the algorithm

initialState = . . .;
workList = queue(); // initially empty
knownStates = set(); // initially empty
workList.insert(initialState);
while len(workList) > 0:

s = workList.removeNext();
check s’ for mutual exclusion;
for s’ in next states(s):

if s’ not in knownStates:
add s’ to workList and knownStates;

How can we make this algorithm parallel?

Where does the code spend most of the time? next states(s)

What are the dependencies?

I As written, the code is very sequential.
I BUT, the correcteness of the algorithm does not depend on the

order in which states are removed from workList.

What uses most of the memory? knownStates and workList

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Making it Parallel
initialState = . . .;
workList = queue(); // initially empty
knownStates = set(); // initially empty
workList.insert(initialState);
while len(workList) > 0:

s = workList.removeNext();
check s’ for mutual exclusion;
for s’ in next states(s):

if s’ not in knownStates:
add s’ to workList and knownStates;

Divide knownStates and workList across the worker
processes? How?

I Sending each new state, s’ to every worker is a bad idea. Why?
I We’ll use hashing instead: send state s’ to worker process
hash(s’) mod P.

Each worker maintains knownStates for the states that hash to
the worker process.
Each worker adds each new state it receives to knownStates
and workList.
Each worker processes the states on its own worklist.
Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 4 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Parallel Model Checking: the Pseudo-Code

modelCheck(KnownStates, WorkList) ->
receive

S when member(S, KnownStates) -> % already seen
modelCheck(KnownStates, WorkList);

S -> modelCheck(add(S, KnownStates),
add(S, WorkList))

after 0 ->
case WorkList of

[] -> is everyone else done();
[S | Tl] ->

[owner(S’) ! S’ || S’ <- next states(S)],
modelCheck(KnownStates, Tl)

end
end.

See Parallelizing the murϕ model checker, U. Stern and D.L. Dill.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 5 / 17

http://dx.doi.org/10.1023/A:1008771324652
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Parallel Model Checking: Performance Analysis
A sequential implementation of the model checking algorithm
requires O(SR) time, where S is the number of reachable states,
and R is the number of rules.
A parallel implementation requires O(SR/P) compute time, and
sends worst-case O(SR) messages.

I In practice, the average number of successors of each state (i.e.
the degree of the state-graph) is relatively small. If we assume this
is a small constant, then we get O(S) messages.

Consider the case where each worker process generates σ new
successor states, s’, per second.

I These are send to the other processes uniformly at random (if we
have a good hash function).

I Half of these messages cross the bisection of any network.
I That means we need a bisection bandwidth of σP/2.

For real-life networks, bisection bandwidth grows much more
slowly than P.

I If we scale this algorithm to a large enough number of processors,
network bandwidth will be the limiting constraint.

I This is a common performance pattern in parallel computing.
Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 6 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

From Algorithm to Industrial Adaptation

What is needed for real-world verification?
Lots of memory:

I Memory and time are both concerns for model checkers, but
memory tends to be the more critical concern.

I A parallel implementation offers the combined memory of a large
number of machines.

Robustness:
I Simple architecture and re-use stable, well-exercised code.
I Prevent “overwhelm and crash”.
I Load balancing.

Flexibility:
I Solve problems that other tools cannot
I In particular, liveness properties such as “response”.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 7 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Erlang for high-performance computing (really)

Use existing C++ code for murϕ.
I It has been carefully optimized – it’s fast.
I It has been widely used over the past 25 years – it’s robust.

Use Erlang to make it parallel
I Erlang handles the communication between processes.
I The code is simple: it works and it’s flexible.
I Erlang can call the C++ functions:

F The compute intensive part is done in C++.
F The Erlang code is not a serious bottleneck.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 8 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Memory
The worklist is the dominant use of memory (in practice)

I Why?
I The worklist needs complete state descriptions.
I The known-state set can use much smaller hashes.

Solution: store the worklist on disk.
I Disks are slow – is this crazy?
I It works just fine because we can access the worklist in any order.
I Keep a large piece of the worklist in main memory.
I If the in-memory work list grows too large, then copy a large chunk

to disk.
I If the in-memory work list becomes too small, then read a large

chunk from disk.
I The disk reads and writes can be performed asynchronously.
I See Using magnetic disks . . . in the murϕ model checker, U. Stern

and D.L. Dill.

Storing the known-state set on disk is much less practical
because it’s a random-access structure.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 9 / 17

http://dx.doi.org/10.1007/BFb0028743
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Batching Messages

If we send each new state, s’, one at a time to its owner process,
communication overhead dominates the run time.
Key lesson: pay attention to λ.
The Erlang code maintains a separate buffer for each worker
process

I Add states that should be sent to that process to the buffer until we
have enough.

I Then send them as a batch.
I A process that is running low on work sends requests to the other

workers to ask them to flush their buffers.
I These flush requests are bundled with state batches to avoid extra

messages.

Erlang makes the communication architecture simple and easy to
extend.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 10 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Overwhelm and Crash
The dangers of using Erlang for high-performance computing

The Erlang in-box is a list.
I Newly received messages are prepended to the list.
I A receive gets the oldest message that matches a pattern of the

receive.
I This means that the time for receive is linear in the number of

pending message.
This leads to a performance catastrophe

I If a process gets slightly behind, its inbox will fill a little more than
the other processes.

I This means that a process that falls behind will slow down, and its
inbox will fill even more.

I Eventually, the process crashes.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 11 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Credits
Preventing “overwhelm and crash”

Drain the inbox into another buffer whenever possible.
Maintain a credit system

I When a process X sends a message to process Y, X decrements
its credit-count for Y.

I If the credit-count is 0, X waits to send its message.
I When Y moves a message from X out of its inbox, it sends a credit

back to X.
I Of course, these messages are piggy-backed on the new-state

messages.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 12 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Load Balancing

Not all processes have the same amount of work, and they don’t
all run at the same speed.
This can lead to idle processors.
Solution:

I Processes include the length of their worklist in their messages to
other workers.

I If a worker has a short worklist, it asks for half of the worklist of the
worker with the longest worklists.

This is a very coarse-grained approach
I PReach makes no effort to keep worklist lengths equal.
I The coarse-grained approach requires very few messages: avoid
λ.

I The performance is very good.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 13 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Flexibility
The Erlang code for PReach is simple.

I The version described in the paper is about 1000 lines of code.
This makes PReach a flexible platform for experiments:

I Checking response properties: e.g. every request is eventually
granted.

I Exploiting symmetry: there are times we can verify a protocol for
two or three nodes and conclude with certainty that it is correct for
any number of nodes.

I And others.
Applications:

I Used by Intel architects when exploring protocols for on-chip
networks.

I Used in other companies and universities.
I It’s been run on hundreds of machines with models of hundreds of

billions of states.
I Symbolic methods are faster than PReach for safety properties

(showing that the model never reaches a bad state)
F PReach is faster for handling liveness properties: showing that some

condition will eventually be satisfied.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 14 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Termination

How do we know when we’re done?
Well, times up for this lecture.
More seriously, in PReach we need to know when

I When every worker process has an empty worklist,
I And there are no messages in flight.

Both conditions must hold at the same time.
I This is the topic for Monday’s lecture.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 15 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Summary

PReach shows how the ideas from this class can be used to build
real-world, high-performance, large-scale, parallel systems.
Lessons learned:

I Erlang is a great environment for building large-scale,
parallel/distributed code.

I Use the C/C++ call interface to use native C/C++ code for the
compute intensive parts of the code.

F Erlang provides three such interfaces!
I Watch out for overwhelm and crash

F If you’re going to send a lot of messages, you need some kind of flow
control mechanism.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 16 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Preview

April 3: Distributed Termination Detection
April 5: Party: 50th Anniversary of Amdahl’s Law

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 17 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Review: for today’s lecture

To make a parallel implementation of a computation, we often
need to identify a set (or many set(s)) of operations that can be
performed in any order.

I For model checking, what set of operations did we find that can be
performed in any order? Does this exactly replicate the sequential
version, or does it perform an equivalent computation?

I Same questions as above, but for reduce.
I Scan? Sorting? Matrix multiplication?

Why did slow processes in PReach tend to become
catastrophically slower? What was the solution?
What is load balancing? Compare the load balancing
mechanisms of PReach and Google’s map-reduce.
Is Erlang suitable for large-scale, high-performance, parallel
computing? Why or why not?

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 18 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

Review: for March 29 lecture

What is model checking?
What is mutual exclusion?
How does the model checker presented in the March 29 slides
show that Dekker’s algorithm guarantees mutual exclusion.
Describe the role of the knownStates and workList data
structures in the model checking algorithm.
What is a guarded command?
Write a murϕ rule for another statement from Dekker’s algorithm.

Mark Greenstreet Industrial Strength, Parallel Model Checking CS 418 – Mar. 31, 2017 19 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_31
https://en.wikipedia.org/wiki/2017

