
Model Checking

Mark Greenstreet

CpSc 418 – Mar. 29, 2017

Motivation
Today’s paper
Applications of Model Checking

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 1 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017


Model-Checking: Motivation

What is “model checking”?
I Construct a “model” for a piece of hardware or software – typically a

finite-state machine.
I Give a precise, mathematical definition of properties that the design

is supposed to have.
I Show that that model satisfies the specification.

F For example, find all reachable states of the model.
F Show that every reachable state satisfies a desired property – for

example, mutual exclusion.

Why use model checking?
I Find bugs.
I Hardware bugs are very expensive.
I Software bugs are very common, but

F Finding bugs in concurrent software is hard.
F The challenges of finding bugs motivates using more systematic

approaches.

A simple example: Dekker’s Mutual Exclusion algorithm

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 2 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017


Dekker’s Algorithm
Problem statement: ensure that at most one thread is in its critical
section at any given time.

thread 0: thread 1:
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: while(flag[1]) {
PC0= 4: if(turn != 0) {
PC0= 5: flag[0] = false;
PC0= 6: while(turn != 0);
PC0= 7: flag[0] = true;
PC0= 8: }
PC0= 9: }
PC0=10: critical section
PC0=11: turn = 1;
PC0=12: flag[0] = false;
PC0=13: }

PC1= 0: while(true) {
PC1= 1: non-critical code
PC1= 2: flag[1] = true;
PC1= 3: while(flag[0]) {
PC1= 4: if(turn != 1) {
PC1= 5: flag[1] = false;
PC1= 6: while(turn != 1);
PC1= 7: flag[1] = true;
PC1= 8: }
PC1= 9: }
PC1=10: critical section
PC1=11: turn = 0;
PC1=12: flag[1] = false;
PC1=13: }

See http://en.wikipedia.org/wiki/Dekker’s_algorithm.

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 3 / 13

http://en.wikipedia.org/wiki/Dekker's_algorithm
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017


Is Dekker’s algorithm correct?

Dijkstra (Turing Award 1972),
presented the algorithm, with a proof in 1965.
We’ll use it as an example for model-checking:

I Construct a finite-state machine model of the algorithm.
I Determine the set of reachable states.
I Verify that all reachable states satisfy mutual exclustion.
I We could check other properties as well:

F For example, freedom from starvation: show that if a process is
attempting to enter it’s critical region, it will eventually succeed.

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 4 / 13

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://amturing.acm.org/award_winners/dijkstra_1053701.cfm
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017


Modeling Dekker’s algorithm
thread 0: code thread 0: state machine
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: while(flag[1]) {
PC0= 4: if(turn != 0) {
PC0= 5: flag[0] = false;
PC0= 6: while(turn != 0);
PC0= 7: flag[0] = true;
PC0= 8: }
PC0= 9: }
PC0=10: critical section
PC0=11: turn = 1;
PC0=12: flag[0] = false;
PC0=13: }

4

flag[0]=1

flag[0]=0

turn!=0

flag[0]=1

!flag[1]

10start
critical

section1
code

non−critical

12
turn=1flag[0]=0

turn==0

3

flag[1]
turn !=0

6

Each process has six control locations.
There are three global boolean variables: flag[0], flag[1], and
turn.
This produces a total of 62 · 23 = 288 possible states.
We want to show that no reachable state has both processes in location
10, the critical section.

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 5 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017


Model Checking Dekker’s algorithm

Represent each state with 9-bits:
I three for the location of each process (6 locations)
I three for flag and turn
I I’ll show a simple python version that uses python tuples

Pseudo-code:
initialState = (1,1,0,0,0); // (loc0, loc1, flag0, flag1, turn)
workList = queue(); // initially empty
knownStates = set(); // initially empty
workList.insert(initialState);
while len(workList) > 0:

s = workList.removeNext();
for s’ in next states(s):

if s’ not in knownStates:
check s’ for mutual exclusion;
add s’ to workList and knownStates

Model-checking finds 48 reachable states for Dekker’s algorithm
and verifies mutual exclusion.

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 6 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017


A Brief History of Model Checking

Proposed by Clarke and Emerson (1981) and independently by
Sifakis (1982).

I They shared the 2007 Turing Award.
I Their approach was essentially the one described above.

Symbolic methods introduced by McMillan (1987) using
binary-decision diagrams, a DAG representation of boolean
formulas.
Widespread adaptation of model-checking for hardware design
took place in the 1990s and continues today.

I The murϕ model checker is a landmark in this work.
Model-checking of software is now gaining industrial acceptance

I Based on “predicate abstraction” methods of Clarke and Grumberg,
and independently Ball.

I Enabled by advances in boolean SAT solvers and
interpolation-based model checking (McMillan).

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 7 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017


Today’s Paper
Protocol Verification as a Hardware Design Aid
Mark’s standard five questions:

1 What problem does the paper address?
I Hardware designs consist of large blocks that communicate using protocols.

Mistakes in the protocol design can cause subtle errors that only occur in rare corner
cases. Such errors are hard to find by traditional simulation.

2 What is the key idea in the paper?
I Use model checking to exhaustively verify small versions of the design.

3 How do the authors validate their idea?
I They implemented a model checker.
I This included defining a modeling language so that protocols can be described easily

and clearly.
I They applied their approach to two protocols from real designs in industry.

4 Is the paper convincing?
I Yes: they showed that they could check important properties of two “down scaled”

protocols.
I No: the protocols seem down-scaled to the edge of being trivial.
I 20/20 hindsight: Definitely! Model-checking methods have evolved and matured and

are now widely used in industry for both hardware and software.
5 Any other comments?

I Glad you asked. See the rest of the lecture.

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 8 / 13

http://ieeexplore.ieee.org/document/276232/?arnumber=276232
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017


Overview of the paper

How does model the hardware?
I murϕ: a guarded command language.

How do we state the properties to be verified?
I Add assertions to the murϕ program.
I Use model checking to show that these assertions hold for all

states of all executions.
How do we perform the model checking?

I Compile the murϕ program to C++.
I Link with an efficient implementation of a model checking

algorithms like the one in dekker mc.py.
I Run the model checker to either verify the properties or report

counter-examples.

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 9 / 13

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/notes/03-29/src/dekker_mc.py
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017


murϕ: a guarded command language

In murϕ a guarded command is called a rule and is written:
rule guard => action
I When guard is satisfied, action may be performed.
I Example: rule ((loc[0] == 3) and flag[1]) => loc[0]
:= 4

Rules may be quantified using the Ruleset construction:
Process: scalarset(2);
ruleset i: Process do

(loc[i] == 3) and flag[1-i] => loc[i] := 4
end

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 10 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017


murϕ: execution model

A program defines a fixed set of rules.
Toss all the rules in a bag.
Repeat indefinitely:

I Pick a rule from the bag.
I If it’s guard is satisfied, perform it’s action.
I Put the rule back in the bag.

For verification: an “adversary” picks the rules from the bag.

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 11 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017


Model checking today

Lots of progress on handling larger models:
I Symbolic methods
I Exploit common model properties: symmetry, commuting-actions,

verifiable abstraction
I Moore’s law: faster machines, larger memories.
I Parallelism (Friday’s lecture)

Applications
I An essential part of cache-protocol design. Used in many other

aspects of hardware design as well.
I Software: Microsoft uses model checking to verify that driver code

conforms to kernel usage rules.
I Software: Amazon uses model-checking to verify protocols used in

their cloud services.
I Many others.

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 12 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017


Preview

March 31: The PReach Model Checker
Reading: Industrial Strength . . . Model Checking

April 3: Distributed Termination Detection
April 5: Party: 50th Anniversary of Amdahl’s Law

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 13 / 13

http://www.cs.ubc.ca/~binghamb/papers/pdmc10-camera-ready.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017


Review

I’ll add some review questions.

Mark Greenstreet Model Checking CS 418 – Mar. 29, 2017 14 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_29
https://en.wikipedia.org/wiki/2017

