Linear Algebra Libraries and CUDA

Mark Greenstreet \& Ian M. Mitchell

CPSC 418 - March 27, 2017

- Why?
- BLAS
- Using BLAS (in general)
- Using BLAS (on CUDA GPUs)
- Other numerical libraries

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet \& lan M. Mitchell and are made available under the terms of the Creative Commons Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

Once Upon a Time...

- Numerical calculation has been a key application since the earliest days of computing.
- The term "computer" has been used for centuries to refer to a person performing mathematical calculations according to a fixed set of rules.
- One of the earliest electronic general purpose computers (1946) was the Electronic Numerical Integrator and Computer (ENIAC) designed primarily to calculate artillery firing tables for the US Army.
- High level programming language and compiler development was spurred by Fortran ("formula translator") starting in the mid-1950s.
- Turing Award for 1989 went to William Kahan for his work "making the world safe for numerical computations."
- IEEE standard for floating point arithmetic (IEEE 754) now provides a common, reproducible and robust format across virtually all computing platforms.

Linear Algebra is Everywhere

Many numerical algorithms are designed around linear algebra operations.

- By late 1960s it was common in the numerical computing community to implement these operations as separate "subprograms"
- ACM-SIGNUM project 1973-1977 set out to design what we would now call a common API to these most common routines.
- Design process and outcomes documented in a series of papers in ACM Trans. Mathematical Software (ACM-TOMS):
- Lawson et al, "Basic linear algebra subprograms for Fortran usage," ACM TOMS 5(3): 308-323 (Sept. 1979).
- Dongarra et al, "An Extended Set of FORTRAN Basic Linear Algebra Subprograms," ACM TOMS 14(1): 1-17 (March 1988).
- Dongarra et al, "A Set of Level 3 Basic Linear Algebra Subprograms," ACM TOMS 16(1): 1-17 (March 1990).
- Blackford et al, "An Updated Set of Basic Linear Algebra Subprograms (BLAS)," ACM TOMS 28(2): 135-151 (June 2002).

Basic Linear Algebra Subprograms (BLAS)

Authors and contributors anticipated many benefits:

- Encourages "structured programming": Modularization of common code sequences.
- Code will be more self-documenting: Other programmers will recognize the subprogram names.
- Subprograms can be coded in assembly to improve efficiency, and if the majority of computational effort is within the subprograms that will significantly benefit the whole application.
- Subprograms can be coded by experts to deal with "algorithmic and implementation subtleties."
- Code becomes portable while still maintaining efficiency.

While the details may differ, similar benefits still accrue today.

Levels of BLAS

BLAS specification consists of operations at one of three "levels":

- BLAS-1: Vector-vector operations (scalar vector product, vector sum, dot product, etc.).
- [Lawson et al, 1979].
- Performs $\mathcal{O}(n)$ operations on $\mathcal{O}(n)$ data.
- BLAS-2: Matrix-vector operations (matrix-vector product, triangular solves)
- [Dongarra et al, 1988].
- Performs $\mathcal{O}\left(n^{2}\right)$ operations on $\mathcal{O}\left(n^{2}\right)$ data.
- BLAS-3: Matrix-matrix operations (matrix-matrix product, triangular solves with multiple right-hand sides)
- [Dongarra et al, 1990].
- Performs $\mathcal{O}\left(n^{3}\right)$ operations on $\mathcal{O}\left(n^{2}\right)$ data.

Types of Operands

- Provides for either "single precision" or "double precision" floating point arithmetic.
- Support for complex variables (real + imaginary components).
- Note that BLAS does not mandate IEEE FP standard: Definition of precision depends on the platform.
- Initial versions focused on dense or banded matrices.
- Special cases for symmetric, Hermitian (complex version of symmetry) or triangular form.
- Extended in [Blackford et al, 2002]:
- Sparse matrices.
- Extended and mixed precision arithmetic.
- A number of new routines whose importance was discovered during implementation of LAPACK:
\star Commonly used operations, such as matrix norm.
\star Slight generalizations of existing routines.
* Perform two existing routines in a single call to reduce memory traffic.
- Many other extensions / implementations have been described.

Fortran? Are You Kidding Me?

- At the time of the initial design of BLAS, Fortran was by far the dominant language of numerical computing.
- The FORTRAN 77 standard had just been adopted
- (the first BLAS definition was non-conforming.)
- Many limitations and idiosyncracies can be avoided, such as:
- Only Fortran bindings.
- ALL CAPITAL LETTERS for symbols.
- Static allocation of arrays.
- 1-based indexing.
- Some Fortran features remain in some implementations, such as:
- Function names and arguments are incomprehensibly short.
- Column-major ordering of data in matrices.
- Arguments are pass by reference (even some scalars).

Decypering BLAS Function Names

Function names in BLAS follow a pattern.

- Often a prefix, such as BLAS_ or cblas_.
- One character to denote data type; for example:
- s: single precision.
- d: double precision.
- Operations involving a matrix add two characters to denote matrix type; for example:
- ge: general dense matrix.
- tb: triangular banded.
- Short mnemonic string to denote operation; for example
- axpy: ax plus y.
- mm: matrix multiply.
- Put them all together:
- BLAS_SAXPY () : Fortran single precision vector summation.
- cblas_dgemm (): C double precision dense matrix product.

Decyphering BLAS Function Arguments (part 1)

 Consider matrix product $C=\alpha A^{\circ \rho} B^{\circ \rho}+\beta C$ implemented by```
cblas_sgemm(enum blas_order_type layout,
 enum blas_trans_type transa,
 enum blas_trans_type transb,
 int m, int n, int k,
 float alpha,
 float *a, int lda,
 float *b, int ldb,
 float beta,
 float *c, int ldc)
```

- layout specifies either column-major or row-major.
- transa specifies whether to use $A, A^{T}$ or $A^{H}$.
- Same for transb and B.
- m, n, k specify matrix sizes: $A$ is $m \times k, B$ is $k \times n, C$ is $m \times n$.
- alpha and beta specify scalar multipliers.
- Some implementations may require pass by reference.


## Decyphering BLAS Function Arguments (part 2)

Consider matrix product $C=\alpha A^{O p} B^{o p}+\beta C$ implemented by

```
cblas_sgemm(enum blas_order_type layout,
 enum blas_trans_type transa,
 enum blas_trans_type transb,
 int m, int n, int k,
 float alpha,
 float *a, int lda,
 float *b, int ldb,
 float beta,
 float *c, int ldc)
```

- a is a pointer to array for $A$ and 1 da is the distance between the start of consecutive columns (for column-major) or rows (for row-major).
- Same for b, 1 db and $B$.
- Same for c, ldc and C.


## What's with the $1 d *$ Arguments?

- BLAS routines allow for data which is not stored continuously.
- These ld* arguments are called the stride.
- For vectors, striding allows access to rows or columns of a matrix.
- Consider the data in an $m \times n$ column-major matrix.
- A column has stride 1 and length $m$.
- A row has stride $m$ and length $n$.
- For matrices, striding allows access to submatrices; for example,
- Consider the data in an $m \times n$ column-major matrix a.
- We want the $p \times q$ block starting at row $i$ and column $j$.
- Data starts at \&a[i + j*m]
- Data has size p by q.
- Data has stride m.


## CUDA and BLAS

- The cuBLAS library provides an API for running BLAS routines on CUDA GPUs.
- Basic pattern of use:
- Initialize the cuBLAS library and allocate hardware resources using cublasCreate().
- Allocate memory using cudaMalloc ().
- Copy data from host to GPU using cublasSetVector () or cublasSetMatrix().
- Perform BLAS operations; for example cublasSaxpy () or cublasSgemm().
- Copy data from GPU to host using cublasGetVector () or cublasGetMatrix().
- Release memory using cudaFree().
- Release hardware resources using cublasDestroy ().
- Example(s).


## Notes on cuBLAS

- Always uses column-major ordering
- So be careful with data layout.
- Always uses 1-based indexing.
- Usually irrelevant since you do not index into arrays.
- All cuBLAS code is called from the host.
- You do not write any kernel code.
- You do not have to worry about grids, blocks, shared memory, ...
- Need to link against cuBLAS library.
- Check that environment variable LD_LIBRARY_PATH includes CUDA library directory.
- (/cs/local/lib/pkg/cudatoolkit/lib64 on linXX machines.)
- Add -lcublas to compile command.


## Efficiency of cuBLAS

Matrix product example from 2017-03-24 lecture (in seconds):

|  | 1024 | 2048 | 3072 | 4096 |
| :--- | ---: | ---: | ---: | ---: |
| Brute force mmult1 | 0.079 | 0.648 | 2.190 | 5.152 |
| Tiled mmult2 |  |  |  |  |
| cublas_sgemm | 0.027 | 0.208 | 0.724 | 1.690 |

- Brute force mmult 1 achieves $\sim 13$ GFLOPS.
- cublas_sgemm achieves $\sim 160$ GFLOPS.
- ( ${ }^{\dagger}$ lan's tiled implementation mmult 2 is buggy.)


## Other Numerical Libraries

- Linear Algebra PACKage (LAPACK).
- Implements the more complex linear algebra operations.
- Designed to call BLAS for basic computational steps.
- For your CPU:
- Intel's Math Kernel Library (MKL) implements core functions from BLAS, LAPACK, FFTs, etc.
- Automatically Tuned Linear Algebra Software (ATLAS) generates a BLAS library tuned to a machine's memory hierarchy.
- Many other accelerated libraries available for CUDA devices.
- For example: cuFFT, cuSPARSE, cuRAND, cuDNN, MAGMA (supports LAPACK), ...

You are almost always better off learning to use the library.

