CUDA: Matrix Multiplication

Mark Greenstreet

CpSc 418 - Mar. 24, 2017

- A Brute Force Implementation
- Tiling

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are made available under the terms of the Creative Commons Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

mmult1: brute-force matrix multiplication

The kernel:

\% one thread per element of the result.
\% matrixMult: compute $\mathrm{c}=\mathrm{a}$ *b
\% For simplicity, assume all matrices are $n \times n$.
_-global__ mmult1_kernel(float *a, float *b, float *c, uint n) \{
uint i $=$ blockDim.y*blockIdx.y + threadIdx.y;
uint j = blockDim.x*blockIdx.x + threadIdx.x;
if ($(\mathrm{i}<\mathrm{n})$ \&\& (j<n)) \{
float *a_row = a + n*i;
float *b_col = b + j;
float sum $=0.0$;
for (int $k=0 ; k<n$; $k++$) \{ sum += a_row[k] * b_col[n*k];
\}
c[i*n + j] = sum;
\}
\}

Brute-force performance

- Not very good - each loop iteration performs
- Two global memory reads.
- One fused floating-point add.
- Four or five integer operations.
- Global memory is slow
- Long access times.
- Bandwidth shared by all the SPs.
- This implementation has a low CGMA
- CGMA = Compute to Global Memory Access ratio $\approx 1 / 2$.
- Performance should be:
- asymptotics: $\mathcal{O}\left(N^{3}\right)$
- wall-clock: $\sim \alpha N^{3}$ with α determined mainly by global memory bandwidth.
- measured: $T(1024) \approx 0.0986 \mathrm{~s} ; T(2048) \approx 0.797 \mathrm{~s} ; T(3072) \approx 2.7 \mathrm{~s}$; $T(4096) \approx 6.3 \mathrm{~s}$.
$N^{3} / T(N) \approx 11 / \mathrm{ns}$ - i.e. about 20×10^{9} multiply-adds per second.
Well below GPU peak floating point capacity. Demonstrates global memory bandwith bottleneck (with a little help from the on-chip caches).

Tiles vs. Slabs

- Matrix multiplication: each processor (color) has tiles at (i,j) and (j,i).
- Can compute all products for the main diagonal, and stripes at spacings of P.
- Use a reduce to combine results to get the main diagonal and the stripes.
- Rotate B one block to the left, and compute the next set of strips.
- After P rounds, the computation is done.
- Same amount of work (and communication) as the improved slab method from Wednesday.
- Other algorithms such as LU-Decomposition
- Rows and columns are eliminated from the left and the top.
- Tiles provide better load balancing.

Tiles vs. Slabs

slabs

tiles

- Matrix multiplication: each processor (color) has tiles at (i,j) and (j,i).
- Can compute all products for the main diagonal, and stripes at spacings of P.
- Use a reduce to combine results to get the main diagonal and the stripes.
- Rotate B one block to the left, and compute the next set of strips.
- After P rounds, the computation is done.
- Same amount of work (and communication) as the improved slab method from Wednesday.
- Other algorithms such as LU-Decomposition
- Rows and columns are eliminated from the left and the top.
- Tiles provide better load balancing.

Tiles vs. Slabs

slabs

tiles

- Matrix multiplication: each processor (color) has tiles at (i,j) and (j,i).
- Can compute all products for the main diagonal, and stripes at spacings of P.
- Use a reduce to combine results to get the main diagonal and the stripes.
- Rotate B one block to the left, and compute the next set of strips.
- After P rounds, the computation is done.
- Same amount of work (and communication) as the improved slab method from Wednesday.
- Other algorithms such as LU-Decomposition
- Rows and columns are eliminated from the left and the top.
- Tiles provide better load balancing.

Tiles vs. Slabs

- Matrix multiplication: each processor (color) has tiles at (i,j) and (j,i).
- Can compute all products for the main diagonal, and stripes at spacings of P.
- Use a reduce to combine results to get the main diagonal and the stripes.
- Rotate B one block to the left, and compute the next set of strips.
- After P rounds, the computation is done.
- Same amount of work (and communication) as the improved slab method from Wednesday.
- Other algorithms such as LU-Decomposition
- Rows and columns are eliminated from the left and the top.
- Tiles provide better load balancing.

Tiling the computation

- Divide each matrix into $m \times m$ tiles.
- For simplicity, we'll assume that n is a multiple of m.
- Each block computes a tile of the product matrix.
- Computing a $m \times m$ tile involves computing n / m products of $m \times m$ tiles and summing up the results.

A Tiled Kernel (step 1)

```
#define TILE_WIDTH 16
__global__ mmult2(float *a, float *b, float *c, int n) {
    float *a_row = a + (blockDim.y*blockIdx.y + threadIdx.y)*n;
    float *b_col = b + (blockDim.x*blockIdx.x + threadIdx.x);
    float sum = 0.0;
    for(int kl = 0; kl < gridDim.x; kl++) { % each tile product
        for(int k2 = 0; k2 < blockDim.x; k2++) { % within each tile
        k = kl*blockDim.x + k2;
        sum += a_row[k] * b_col[n*k]);
    }
    }
    c[ (blockDim.y*blockIdx.y + threadIdx.y)*n +
        (blockDim.x*blockIdx.x + threadIdx.x) ] = sum;
}
```


Launching the kernel:

```
int nblks = n/TILE_WIDTH;
dim3 blks(nblks, nblks, 1);
dim3 thrds(TILE_WIDTH, TILE_WIDTH, 1);
matrixMult<<<blks,thrds>>> (a, b, c, n);
```


A Tiled Kernel (step 2)

```
_-global__ matrixMult(float *a, float *b, float *c, int n) {
    __shared__ a_tile[TILE_WIDTH][TILE_WIDTH];
    __shared_- b_tile[TILE_WIDTH][TILE_WIDTH+1];
    int br = blockIdx.y, bc = blockIdx.x;
    int tr = threadIdx.y, tc = threadIdx.x;
    float *a_row = a + (blockDim.y*br + tr)*n;
    float *b_col = b + (blockDim.x*bc + tc);
    float sum = 0.0;
    for(int k1 = 0; k1 < gridDim.x; k1++) { % each tile product
        a_tile[tr][tc] = a_row[TILE_WIDTH*k1 + tc];
        b_tile[tr][tc] = b_col[n*(TILE_WIDTH*k1 + tr)];
        __syncthreads();
        for(int k2 = 0; k2 < blockDim.x; k2++) { % within each tile
            sum += a_tile[tc][k2] * b_tile[k2][tc];
        }
        __syncthreads();
    }
    c[(blockDim.y*br + tr)*n + (blockDim.x*bc + tc) ] = sum;
}
```


Performance of mmult2

- $T(1024)=0.027 \mathrm{~s} ; T(2048)=0.214 \mathrm{~s} ; T(3072)=0.742 \mathrm{~s} ;$ $T(4096)=1.73 \mathrm{~s}$.
- Still cubic in N, of course.
- $N^{3} / T(N) \approx 40 / \mathrm{ns}$ - about 40 billion multiply-adds per second.
- About four times faster than mmult1.

Performance issues for mmult2

The "checklist"

- Are global memory accesses coalesced?
- What is the CGMA?
- Do we have shared memory access conflicts?
- What is the warp-scheduler occupancy?
- How many registers per thread?
- How many threads per block?
- How much shared memory per block?
- How much "other stuff" does each thread perform for each floating point operation?

Tiling is good for more than just matrix multiplication

- Other numerical applications:
- LU-decomposition and other factoring algorithms.
- Matrix transpose.
- Finite-element methods.
- Many, many more.
- A non-numerical example: revsort

```
% To sort N}\mp@subsup{N}{}{2}\mathrm{ values, arrange them as a N }\timesN\mathrm{ array.
repeat }\operatorname{log}N\mathrm{ times {
    sort even numbered rows left-to-right.
    sort odd numbered rows right to left.
    sort columns top-to-bottom.
}
```

- We can get coalesced accesses for the rows, but not the columns.
- Cooperative loading can help here - e.g. use a transpose.

Summary

- Brute-force matrix multiplication is limited by global memory bandwidth.
- Using tiles addresses this bottleneck:
- Load tile into shared memory and use them many times.
- Each tile element is used by multiple threads.
- The threads cooperate to load the tiles.
- This approach also provides memory coalescing.
- Other optimizations: prefetching, double-buffering, loop-unrolling.
- First, identify the critical bottleneck.
- Then, optimize.
- These ideas apply to many parallel programming problems:
- When possible, divide the problem into blocks to keep the data local.
- Examples include matrix and mesh algorithms.
- The same approach can be applied to non-numerical problems as well.

Preview

March 27: Using Parallel Libraries
March 29: Introduction to Model Checking
Reading: Protocol Verification as a Hardware Design Aid
March 31: The PReach Model Checker
Reading: Industrial Strength ... Model Checking
April 3: Distributed Termination Detection
April 5: Party: 50 ${ }^{\text {th }}$ Anniversary of Amdahl's Law

