CUDA: Matrix Multiplication

Mark Greenstreet

CpSc 418 — Mar. 24, 2017

@ A Brute Force Implementation

@ Tiling

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
@ made available under the terms of the Creative Commons Attribution 4.0 International license
. http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017 1/12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

mmultl: brute-force matrix multiplication

The kernel:
% one thread per element of the result.
% matrixMult: compute ¢ = a*b

For simplicity, assume all matrices are n X n.

_global__ mmultl_kernel (float xa, float xb, float xc, uint n) {

uint i =

blockDim.y*blockIdx.y + threadIdx.y;
uint j =

blockDim.x*blockIdx.x + threadIdx.x;
if((1 < n) && (3 < n)) {
float xa.row = a + nxi;
float *b_col = b + 3J;
float sum = 0.0
for(int k = 0;

}

cl[i*n + j] = sum;

7
k < n; k++) {
sum += a.rowl[k] % b_col[n=*k];

Mark Greenstreet CUDA: Matrix Multiplication

CS 418 — Mar. 24, 2017

2/12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

Brute-force performance

@ Not very good — each loop iteration performs
» Two global memory reads.
» One fused floating-point add.
» Four or five integer operations.
@ Global memory is slow
» Long access times.
» Bandwidth shared by all the SPs.
@ This implementation has a low CGMA
» CGMA = Compute to Global Memory Access ratio ~ 1/2.
@ Performance should be:
» asymptotics: O(N®)
» wall-clock: ~ aN°® with o determined mainly by global memory
bandwidth.
» measured: T(1024) ~ 0.0986s; T(2048) ~ 0.797s; T(3072) ~ 2.7s;
T(4096) ~ 6.3s.
N3/T(N) ~ 11 /ns —i.e. about 20 x 10° multiply-adds per second.
Well below GPU peak floating point capacity. Demonstrates global
memory bandwith bottleneck (with a little help from the on-chip
caches).

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017 3/12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

Tiles vs. Slabs

slabs tiles

@ Matrix multiplication: each processor (color) has tiles at (i,j) and (j,i).

» Can compute all products for the main diagonal, and stripes at spacings of
P.
Use a reduce to combine results to get the main diagonal and the stripes.
Rotate B one block to the left, and compute the next set of strips.
After P rounds, the computation is done.
Same amount of work (and communication) as the improved slab method
from Wednesday.

@ Other algorithms such as LU-Decomposition

» Rows and columns are eliminated from the left and the top.
» Tiles provide better load balancing.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017 4/12

vy VvV VvYy

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

Tiles vs. Slabs

slabs tiles

@ Matrix multiplication: each processor (color) has tiles at (i,j) and (j,i).

» Can compute all products for the main diagonal, and stripes at spacings of
P.
Use a reduce to combine results to get the main diagonal and the stripes.
Rotate B one block to the left, and compute the next set of strips.
After P rounds, the computation is done.
Same amount of work (and communication) as the improved slab method
from Wednesday.

@ Other algorithms such as LU-Decomposition

» Rows and columns are eliminated from the left and the top.
» Tiles provide better load balancing.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017 4/12

vy VvV VvYy

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

Tiles vs. Slabs

slabs tiles

@ Matrix multiplication: each processor (color) has tiles at (i,j) and (j,i).

» Can compute all products for the main diagonal, and stripes at spacings of
P.
Use a reduce to combine results to get the main diagonal and the stripes.
Rotate B one block to the left, and compute the next set of strips.
After P rounds, the computation is done.
Same amount of work (and communication) as the improved slab method
from Wednesday.

@ Other algorithms such as LU-Decomposition

» Rows and columns are eliminated from the left and the top.
» Tiles provide better load balancing.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017 4/12

vy VvV VvYy

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

Tiles vs. Slabs

slabs tiles

@ Matrix multiplication: each processor (color) has tiles at (i,j) and (j,i).

» Can compute all products for the main diagonal, and stripes at spacings of
P.
Use a reduce to combine results to get the main diagonal and the stripes.
Rotate B one block to the left, and compute the next set of strips.
After P rounds, the computation is done.
Same amount of work (and communication) as the improved slab method
from Wednesday.

@ Other algorithms such as LU-Decomposition

» Rows and columns are eliminated from the left and the top.
» Tiles provide better load balancing.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017 4/12

vy VvV VvYy

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

Tiling the computation

@ Divide each matrix into m x m tiles.
» For simplicity, we’ll assume that n is a multiple of m.
@ Each block computes a tile of the product matrix.

» Computing a m x m tile involves computing n/m products of m x m
tiles and summing up the results.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017 5/12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

A Tiled Kernel (step 1)

#define TILE_WIDTH 16
_global__ mmult2 (float =xa, float *b, float =xc, int n) {

float *xa.row = a + (blockDim.y*blockIdx.y + threadIdx.y) *n;

float *b_col =D (blockDim.x*blockIdx.x + threadIdx.x);

float sum = 0.0;

for(int k1 = 0; k1l < gridDim.x; kl++) { % eachtile product
) { % within each tile

I~

for (int k2 0; k2 < blockDim.x; k2++
k = klsblockDim.x + k2;
sum += a.rowl[k] % b_col[nx*k]);

}
}

c[(blockDim.yxblockIdx.y + threadIdx.y)#*n +
(blockDim.x*blockIdx.x + threadIdx.x)] = sum;

}
Launching the kernel:

int nblks = n/TILEWIDTH;

dim3 blks (nblks, nblks, 1);

dim3 thrds (TILE.WIDTH, TILEWIDTH, 1);
matrixMult<<<blks,thrds>>>(a, b, c, n);

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017

6/12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

A Tiled Kernel (step 2)

_global__ matrixMult (float =*a, float xb, float xc, int n) {
_shared__ a_tile[TILE_WIDTH] [TILE_WIDTH];
_shared__ b.tile[TILEWIDTH] [TILE.WIDTH+1];
int br = blockIdx.y, bc = blockIdx.x;
int tr = threadIdx.y, tc = threadIdx.x;
float *a-row = a + (blockDim.yxbr + tr)sn;
float *b_col = b + (blockDim.x*bc + tc);
float sum = 0.0;
for(int k1l = 0; k1 < gridDim.x; kl++) { % each tile product

a_tile[tr][tc] = a-row[TILEWIDTH*xkl + tc];
b_tile[tr][tc] = b_col[nx (TILEWIDTH+xkl + tr)];
__syncthreads () ;

for (int k2 = 0; k2 < blockDim.x; k2++) { % within each tile
sum += a_tile[tc] [k2] * b_tile[k2] [tc];
}

__syncthreads () ;

}

c[(blockDim.y*br + tr)*n + (blockDim.x*bc + tc)] = sum;

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017 7/12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

Performance of mmult?2

@ T(1024) = 0.027s; T(2048) = 0.214s; T(3072) = 0.742s;
T(4096) = 1.73s.
@ Sitill cubic in N, of course.

» N3/T(N) =~ 40/ns — about 40 billion multiply-adds per second.
» About four times faster than mmult1.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017 8/12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

Performance issues for mmult?2

The “checklist”
@ Are global memory accesses coalesced?
@ What is the CGMA?
@ Do we have shared memory access conflicts?
@ What is the warp-scheduler occupancy?

» How many registers per thread?
» How many threads per block?
» How much shared memory per block?

@ How much “other stuff” does each thread perform for each floating point
operation?

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017 9/12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

Tiling is good for more than just matrix multiplication

@ Other numerical applications:
» LU-decomposition and other factoring algorithms.
» Matrix transpose.
» Finite-element methods.
» Many, many more.
@ A non-numerical example: revsort
% To sort N? values, arrange them as a N x N array.
repeat logN times {
sort even numbered rows left-to-right.

sort odd numbered rows right to left.
sort columns top-to-bottom.

}

» We can get coalesced accesses for the rows, but not the columns.
» Cooperative loading can help here — e.g. use a transpose.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017 10/12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

Summary

@ Brute-force matrix multiplication is limited by global memory
bandwidth.

@ Using tiles addresses this bottleneck:
» Load tile into shared memory and use them many times.
» Each tile element is used by multiple threads.
» The threads cooperate to load the tiles.
» This approach also provides memory coalescing.

@ Other optimizations: prefetching, double-buffering, loop-unrolling.
» First, identify the critical bottleneck.
» Then, optimize.

@ These ideas apply to many parallel programming problems:

» When possible, divide the problem into blocks to keep the data
local.

» Examples include matrix and mesh algorithms.

» The same approach can be applied to non-numerical problems as
well.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017 11/12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

Preview

March 27: Using Parallel Libraries
March 29: Introduction to Model Checking
Reading: Protocol Verification as a Hardware Design Aid
March 31: The PReach Model Checker
Reading: Industrial Strength ... Model Checking
April 3: Distributed Termination Detection
April 5: Party: 501" Anniversary of Amdahl’'s Law

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 24, 2017 12/12

http://ieeexplore.ieee.org/document/276232/?arnumber=276232
http://www.cs.ubc.ca/~binghamb/papers/pdmc10-camera-ready.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

