
CUDA: Matrix Multiplication

Mark Greenstreet

CpSc 418 – Mar. 24, 2017

A Brute Force Implementation
Tiling

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 1 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


mmult1: brute-force matrix multiplication

The kernel:

% one thread per element of the result.
% matrixMult: compute c = a*b
% For simplicity, assume all matrices are n × n.
global mmult1 kernel(float *a, float *b, float *c, uint n) {
uint i = blockDim.y*blockIdx.y + threadIdx.y;
uint j = blockDim.x*blockIdx.x + threadIdx.x;
if((i < n) && (j < n)) {

float *a row = a + n*i;
float *b col = b + j;
float sum = 0.0;
for(int k = 0; k < n; k++) {

sum += a row[k] * b col[n*k];
}
c[i*n + j] = sum;

}
}

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 2 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


Brute-force performance
Not very good – each loop iteration performs

I Two global memory reads.
I One fused floating-point add.
I Four or five integer operations.

Global memory is slow
I Long access times.
I Bandwidth shared by all the SPs.

This implementation has a low CGMA
I CGMA = Compute to Global Memory Access ratio ≈ 1/2.

Performance should be:
I asymptotics: O(N3)
I wall-clock: ∼ αN3 with α determined mainly by global memory

bandwidth.
I measured: T (1024) ≈ 0.0986s; T (2048) ≈ 0.797s; T (3072) ≈ 2.7s;

T (4096) ≈ 6.3s.
N3/T (N) ≈ 11/ns – i.e. about 20× 109 multiply-adds per second.
Well below GPU peak floating point capacity. Demonstrates global
memory bandwith bottleneck (with a little help from the on-chip
caches).

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 3 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


Tiles vs. Slabs

slabs tiles

Matrix multiplication: each processor (color) has tiles at (i,j) and (j,i).
I Can compute all products for the main diagonal, and stripes at spacings of

P.
I Use a reduce to combine results to get the main diagonal and the stripes.
I Rotate B one block to the left, and compute the next set of strips.
I After P rounds, the computation is done.
I Same amount of work (and communication) as the improved slab method

from Wednesday.
Other algorithms such as LU-Decomposition

I Rows and columns are eliminated from the left and the top.
I Tiles provide better load balancing.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 4 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


Tiles vs. Slabs

slabs tiles

Matrix multiplication: each processor (color) has tiles at (i,j) and (j,i).
I Can compute all products for the main diagonal, and stripes at spacings of

P.
I Use a reduce to combine results to get the main diagonal and the stripes.
I Rotate B one block to the left, and compute the next set of strips.
I After P rounds, the computation is done.
I Same amount of work (and communication) as the improved slab method

from Wednesday.
Other algorithms such as LU-Decomposition

I Rows and columns are eliminated from the left and the top.
I Tiles provide better load balancing.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 4 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


Tiles vs. Slabs

slabs tiles

Matrix multiplication: each processor (color) has tiles at (i,j) and (j,i).
I Can compute all products for the main diagonal, and stripes at spacings of

P.
I Use a reduce to combine results to get the main diagonal and the stripes.
I Rotate B one block to the left, and compute the next set of strips.
I After P rounds, the computation is done.
I Same amount of work (and communication) as the improved slab method

from Wednesday.
Other algorithms such as LU-Decomposition

I Rows and columns are eliminated from the left and the top.
I Tiles provide better load balancing.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 4 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


Tiles vs. Slabs

slabs tiles

Matrix multiplication: each processor (color) has tiles at (i,j) and (j,i).
I Can compute all products for the main diagonal, and stripes at spacings of

P.
I Use a reduce to combine results to get the main diagonal and the stripes.
I Rotate B one block to the left, and compute the next set of strips.
I After P rounds, the computation is done.
I Same amount of work (and communication) as the improved slab method

from Wednesday.
Other algorithms such as LU-Decomposition

I Rows and columns are eliminated from the left and the top.
I Tiles provide better load balancing.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 4 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


Tiling the computation

Divide each matrix into m ×m tiles.
I For simplicity, we’ll assume that n is a multiple of m.

Each block computes a tile of the product matrix.
I Computing a m ×m tile involves computing n/m products of m ×m

tiles and summing up the results.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 5 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


A Tiled Kernel (step 1)
#define TILE WIDTH 16
global mmult2(float *a, float *b, float *c, int n) {
float *a row = a + (blockDim.y*blockIdx.y + threadIdx.y)*n;
float *b col = b + (blockDim.x*blockIdx.x + threadIdx.x);
float sum = 0.0;
for(int k1 = 0; k1 < gridDim.x; k1++) { % each tile product

for(int k2 = 0; k2 < blockDim.x; k2++) { % within each tile
k = k1*blockDim.x + k2;
sum += a row[k] * b col[n*k]);

}
}
c[ (blockDim.y*blockIdx.y + threadIdx.y)*n +

(blockDim.x*blockIdx.x + threadIdx.x) ] = sum;
}

Launching the kernel:

int nblks = n/TILE WIDTH;
dim3 blks(nblks, nblks, 1);
dim3 thrds(TILE WIDTH, TILE WIDTH, 1);
matrixMult<<<blks,thrds>>>(a, b, c, n);

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 6 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


A Tiled Kernel (step 2)

global matrixMult(float *a, float *b, float *c, int n) {
shared a tile[TILE WIDTH][TILE WIDTH];
shared b tile[TILE WIDTH][TILE WIDTH+1];

int br = blockIdx.y, bc = blockIdx.x;
int tr = threadIdx.y, tc = threadIdx.x;
float *a row = a + (blockDim.y*br + tr)*n;
float *b col = b + (blockDim.x*bc + tc);
float sum = 0.0;
for(int k1 = 0; k1 < gridDim.x; k1++) { % each tile product

a tile[tr][tc] = a row[TILE WIDTH*k1 + tc];
b tile[tr][tc] = b col[n*(TILE WIDTH*k1 + tr)];
syncthreads();

for(int k2 = 0; k2 < blockDim.x; k2++) { % within each tile
sum += a tile[tc][k2] * b tile[k2][tc];

}
syncthreads();

}
c[(blockDim.y*br + tr)*n + (blockDim.x*bc + tc) ] = sum;

}

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 7 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


Performance of mmult2

T (1024) = 0.027s; T (2048) = 0.214s; T (3072) = 0.742s;
T (4096) = 1.73s.
Still cubic in N, of course.

I N3/T (N) ≈ 40/ns – about 40 billion multiply-adds per second.
I About four times faster than mmult1.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 8 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


Performance issues for mmult2

The “checklist”

Are global memory accesses coalesced?

What is the CGMA?

Do we have shared memory access conflicts?

What is the warp-scheduler occupancy?

I How many registers per thread?
I How many threads per block?
I How much shared memory per block?

How much “other stuff” does each thread perform for each floating point
operation?

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 9 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


Tiling is good for more than just matrix multiplication

Other numerical applications:
I LU-decomposition and other factoring algorithms.
I Matrix transpose.
I Finite-element methods.
I Many, many more.

A non-numerical example: revsort
% To sort N2 values, arrange them as a N × N array.
repeat log N times {

sort even numbered rows left-to-right.
sort odd numbered rows right to left.
sort columns top-to-bottom.

}

I We can get coalesced accesses for the rows, but not the columns.
I Cooperative loading can help here – e.g. use a transpose.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 10 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


Summary

Brute-force matrix multiplication is limited by global memory
bandwidth.
Using tiles addresses this bottleneck:

I Load tile into shared memory and use them many times.
I Each tile element is used by multiple threads.
I The threads cooperate to load the tiles.
I This approach also provides memory coalescing.

Other optimizations: prefetching, double-buffering, loop-unrolling.
I First, identify the critical bottleneck.
I Then, optimize.

These ideas apply to many parallel programming problems:
I When possible, divide the problem into blocks to keep the data

local.
I Examples include matrix and mesh algorithms.
I The same approach can be applied to non-numerical problems as

well.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 11 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


Preview

March 27: Using Parallel Libraries
March 29: Introduction to Model Checking

Reading: Protocol Verification as a Hardware Design Aid
March 31: The PReach Model Checker

Reading: Industrial Strength . . . Model Checking
April 3: Distributed Termination Detection
April 5: Party: 50th Anniversary of Amdahl’s Law

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 12 / 12

http://ieeexplore.ieee.org/document/276232/?arnumber=276232
http://www.cs.ubc.ca/~binghamb/papers/pdmc10-camera-ready.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017

