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mmult1: brute-force matrix multiplication

The kernel:

% one thread per element of the result.
% matrixMult: compute c = a*b
% For simplicity, assume all matrices are n × n.
global mmult1 kernel(float *a, float *b, float *c, uint n) {
uint i = blockDim.y*blockIdx.y + threadIdx.y;
uint j = blockDim.x*blockIdx.x + threadIdx.x;
if((i < n) && (j < n)) {

float *a row = a + n*i;
float *b col = b + j;
float sum = 0.0;
for(int k = 0; k < n; k++) {

sum += a row[k] * b col[n*k];
}
c[i*n + j] = sum;

}
}
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Brute-force performance
Not very good – each loop iteration performs

I Two global memory reads.
I One fused floating-point add.
I Four or five integer operations.

Global memory is slow
I Long access times.
I Bandwidth shared by all the SPs.

This implementation has a low CGMA
I CGMA = Compute to Global Memory Access ratio ≈ 1/2.

Performance should be:
I asymptotics: O(N3)
I wall-clock: ∼ αN3 with α determined mainly by global memory

bandwidth.
I measured: T (1024) ≈ 0.0986s; T (2048) ≈ 0.797s; T (3072) ≈ 2.7s;

T (4096) ≈ 6.3s.
N3/T (N) ≈ 11/ns – i.e. about 20× 109 multiply-adds per second.
Well below GPU peak floating point capacity. Demonstrates global
memory bandwith bottleneck (with a little help from the on-chip
caches).
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Tiles vs. Slabs

slabs tiles

Matrix multiplication: each processor (color) has tiles at (i,j) and (j,i).
I Can compute all products for the main diagonal, and stripes at spacings of

P.
I Use a reduce to combine results to get the main diagonal and the stripes.
I Rotate B one block to the left, and compute the next set of strips.
I After P rounds, the computation is done.
I Same amount of work (and communication) as the improved slab method

from Wednesday.
Other algorithms such as LU-Decomposition

I Rows and columns are eliminated from the left and the top.
I Tiles provide better load balancing.
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Tiling the computation

Divide each matrix into m ×m tiles.
I For simplicity, we’ll assume that n is a multiple of m.

Each block computes a tile of the product matrix.
I Computing a m ×m tile involves computing n/m products of m ×m

tiles and summing up the results.
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A Tiled Kernel (step 1)
#define TILE WIDTH 16
global mmult2(float *a, float *b, float *c, int n) {
float *a row = a + (blockDim.y*blockIdx.y + threadIdx.y)*n;
float *b col = b + (blockDim.x*blockIdx.x + threadIdx.x);
float sum = 0.0;
for(int k1 = 0; k1 < gridDim.x; k1++) { % each tile product

for(int k2 = 0; k2 < blockDim.x; k2++) { % within each tile
k = k1*blockDim.x + k2;
sum += a row[k] * b col[n*k]);

}
}
c[ (blockDim.y*blockIdx.y + threadIdx.y)*n +

(blockDim.x*blockIdx.x + threadIdx.x) ] = sum;
}

Launching the kernel:

int nblks = n/TILE WIDTH;
dim3 blks(nblks, nblks, 1);
dim3 thrds(TILE WIDTH, TILE WIDTH, 1);
matrixMult<<<blks,thrds>>>(a, b, c, n);
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A Tiled Kernel (step 2)

global matrixMult(float *a, float *b, float *c, int n) {
shared a tile[TILE WIDTH][TILE WIDTH];
shared b tile[TILE WIDTH][TILE WIDTH+1];

int br = blockIdx.y, bc = blockIdx.x;
int tr = threadIdx.y, tc = threadIdx.x;
float *a row = a + (blockDim.y*br + tr)*n;
float *b col = b + (blockDim.x*bc + tc);
float sum = 0.0;
for(int k1 = 0; k1 < gridDim.x; k1++) { % each tile product

a tile[tr][tc] = a row[TILE WIDTH*k1 + tc];
b tile[tr][tc] = b col[n*(TILE WIDTH*k1 + tr)];
syncthreads();

for(int k2 = 0; k2 < blockDim.x; k2++) { % within each tile
sum += a tile[tc][k2] * b tile[k2][tc];

}
syncthreads();

}
c[(blockDim.y*br + tr)*n + (blockDim.x*bc + tc) ] = sum;

}
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Performance of mmult2

T (1024) = 0.027s; T (2048) = 0.214s; T (3072) = 0.742s;
T (4096) = 1.73s.
Still cubic in N, of course.

I N3/T (N) ≈ 40/ns – about 40 billion multiply-adds per second.
I About four times faster than mmult1.
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Performance issues for mmult2

The “checklist”

Are global memory accesses coalesced?

What is the CGMA?

Do we have shared memory access conflicts?

What is the warp-scheduler occupancy?

I How many registers per thread?
I How many threads per block?
I How much shared memory per block?

How much “other stuff” does each thread perform for each floating point
operation?

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 24, 2017 9 / 12

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_24
https://en.wikipedia.org/wiki/2017


Tiling is good for more than just matrix multiplication

Other numerical applications:
I LU-decomposition and other factoring algorithms.
I Matrix transpose.
I Finite-element methods.
I Many, many more.

A non-numerical example: revsort
% To sort N2 values, arrange them as a N × N array.
repeat log N times {

sort even numbered rows left-to-right.
sort odd numbered rows right to left.
sort columns top-to-bottom.

}

I We can get coalesced accesses for the rows, but not the columns.
I Cooperative loading can help here – e.g. use a transpose.
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Summary

Brute-force matrix multiplication is limited by global memory
bandwidth.
Using tiles addresses this bottleneck:

I Load tile into shared memory and use them many times.
I Each tile element is used by multiple threads.
I The threads cooperate to load the tiles.
I This approach also provides memory coalescing.

Other optimizations: prefetching, double-buffering, loop-unrolling.
I First, identify the critical bottleneck.
I Then, optimize.

These ideas apply to many parallel programming problems:
I When possible, divide the problem into blocks to keep the data

local.
I Examples include matrix and mesh algorithms.
I The same approach can be applied to non-numerical problems as

well.
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Preview

March 27: Using Parallel Libraries
March 29: Introduction to Model Checking

Reading: Protocol Verification as a Hardware Design Aid
March 31: The PReach Model Checker

Reading: Industrial Strength . . . Model Checking
April 3: Distributed Termination Detection
April 5: Party: 50th Anniversary of Amdahl’s Law
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