
Matrix Multiplication – Algorithms

Mark Greenstreet

CpSc 418 – Mar. 22, 2017

Outline:
Sequential Matrix Multiplication
Parallel Implementations, Performance, and Trade-Offs.

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 1 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Objectives

Apply concepts of algorithm analysis, parallelization, overhead, and
performance measurement to a real problem.

Design sequential and parallel algorithms for matrix multiplication.
Analyse algorithms and measure performance.
Identify bottlenecks and refine algorithms.

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 2 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Matrix representation in Erlang

I’ll represent a matrix as a list of lists.
For example, the matrix 1 2 3 4

1 4 9 16
1 8 27 64

is represented by the Erlang nested-list:

[[1, 2, 3, 4]
[1, 4, 9, 16]
[1, 8, 27, 64]]

The empty matrix is [].
I This means my representation can’t distinguish between a 2× 0

matrix, a 0× 4 matrix, and a 0× 0 matrix.
I That’s OK. This package is to show some simple examples.
I I’m not claiming it’s for advanced scientific computing.

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 3 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Sequential Matrix Multiplication

mult(A, B) ->
BT = transpose(B),
lists:map(

fun(Row of A) ->
lists:map(

fun(Col of B) ->
dot prod(Row of A, Col of B)

end, BT)
end, A).

dot prod(V1, V2) ->
lists:foldl(

fun({X,Y},Sum) -> Sum + X*Y end,
0, lists:zip(V1, V2)).

Next, we’ll use list comprehensions to get a more succinct version.

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 4 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Matrix Multiplication, with comprehensions

mult(A, B) ->
BT = transpose(B),
[[dot prod(RowA, ColB) || ColB <- BT] || RowA <- A].

transpose([]) -> []; % special case for empty matrices
transpose([[]|]) -> []; % bottom of recursion, the columns are empty
transpose(M) ->
[[H || [H | T] <- M] % create a row from the first column of M
| transpose([T || [H | T] <- M]) % now, transpose what’s left

].

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 5 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Performance – Modeled
Really simple, operation counts:

I Multiplications: n rows a ∗ n cols b ∗ n cols a.
I Additions: n rows a ∗ n cols b ∗ (n cols a− 1).
I Memory-reads: 2∗#Multiplications.
I Memory-writes: n rows a ∗ n cols b.
I Time is O(n rows a ∗ n cols b ∗ n cols a),

If both matrices are N × N, then its O(N3).
But, memory access can be terrible.

I For example, let matrices a and b be 1000× 1000.
I Assume a processor with a 4M L2-cache (final cache), 32

byte-cache lines, and a 200 cycle stall for main memory accesses.
I Observe that a row of matrix a and a column of b fit in the cache. (a

total of ∼40K bytes).
I But, all of b does not fit in the cache (that’s 8 Mbytes).
I So, on every fourth pass through the inner loop, every read from b

is a cache miss!
I Cache miss dominates everything else.

This is why there are carefully tuned numerical libraries.

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 6 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Performance – Measured

100 101 102 103
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

103

N

Ti
m

e

Time for N × N matrix multiplication

Cubic of best fit: T = (107N3 + 134N2 + 173N − 32)ns.
Fit to first six data points.
Cache misses effects are visible, for N=1000:

I model predicts T = 107seconds,
I but the measured value is T = 142seconds.

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 7 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Tiling Matrices
An Example

Let A, B, and C = AB be 16× 16 matrices.
Let A1 = A[1 : 4,1 : 16], i.e. the first four rows of A.

I In our Erlang represntation, [A1,] = lists:split(4, A).

Let A2 = A[5 : 8,1 : 16]; A3 = A[9 : 12,1 : 16];
A4 = A[13 : 16,1 : 16]; and likewise for C1, C2, C3, and C4.
Big important fact:

C1 = A1 B C2 = A2 B
C3 = A3 B C4 = A4 B

In sequential Erlang:
[C1, C2, C3, C4] = [mult(AA, B) || AA <- A]

To make it parallel, we compute each of the CI = AI B with a
separate process.

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 8 / 20

http://erlang.org/doc/man/lists.html#split-2
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Parallel Algorithm 1
A BA B

Parallelize the outer-loop.

Each iteration of the outer-loop multiplies a
row of A by all of B to produce a row of A×B.

Divide A (and B) into blocks.

Each processor sends its blocks of B to all of
the the other processors.

Now, each processor has a block of rows of
A and all of B. The processor computes it’s
part of the product to produce a block of rows
of C.

Note: OpenMP does this kind of
parallelization automatically.

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 9 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Parallel Algorithm 1 in Erlang

% mult(W, Key, Key1, Key2) – create a matrix associated with Key
% that is the product of the matrices associated with Key1 and Key2.
mult1(W, Key, Key1, Key2) ->
Nproc = workers:nworkers(W),
workers:update(W, Key,
fun(PS, I) ->

A = workers:get(PS, Key1), % my rows of A
B = workers:get(PS, Key2), % my rows of B
[WW ! {B, I} || WW <- W], % send my rows of B to everyone
B full = lists:append(% receive B from everyone

[receive {BB, J} -> BB end
|| J <- lists:seq(1, Nproc)]),

matrix:mult(A, B full) % compute my part of the product
end

).

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 10 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Performance of Parallel Algorithm 1 – Modeled

CPU operations: same total number of multiplies and adds, but
distributed around P processors. Total time: O(N3/P).
Communication: Each processors sends (and receives) P − 1
messages of size N2/P. If time to send a message is t0 + t1 ∗M
where M is the size of the message, then the communication time
is

(P − 1)
(

t0 + t1
N2

P

)
= O(N2 + λP), but, beware of large constants

= O(N2), N2 > P

Note: I’m assuming t0 corresponds to λ, and that t1 is roughly the
same as a the time for “typical” sequential operations..
Memory: Each process needs O(N2/P) storage for its block of A
and the result. It also needs O(N2) to hold all of B.

I The simple algorithm divides the computation across all processors,
but it doesn’t make good use of their combined memory.

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 11 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Performance of Parallel Algorithm 1 – Measured

1 2 4 8 16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

d
up

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 12 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Using Memory more Efficiently

Main idea: each process works on one “slab” of B at a time.

C[i , j] =
∑N

k=1 A[i , k]B[k , j], a dot-product

=
(∑N/4

k=1 A[i , k]B[k , j]
)
+
(∑N/2

k=(N/4)+1 A[i , k]B[k , j]
)

+
(∑3N/4

k=(N/2)+1 A[i , k]B[k , j]
)
+
(∑N

k=(3N/4)+1 A[i , k]B[k , j]
)

Each process does each of its four summations when it holds the
corresponding slab of B.

I Each holds one slap of A for the whole computation.
I Each process only needs to hold one slab of B at at time.

The algorithm generalizes to having any number of slabs for A and
B in the obvious way.

I Should be “obvious” if I’ve explained this clearly.
I If it isn’t obvious, that’s my bad – please ask a question.

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 13 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Parallel Algorithm 2 (illustrated)
A B

4

3

4

1

2

1

4

3

2

2

3

1

4

2

3

1

4

1

2

3

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 14 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Parallel Algorithm 2 (code sketch)

Each processor first computes what it can with its rows from A and
B.

I It can only use N/P of its columns of its block from A.
I It uses its entire block from B.
I We’ve now computed one of P matrices, where the sum of all of

these matrices is the matrix AB.
We view the processors as being arranged in a ring,

I Each processor forwards its block of B to the next processor in the
ring.

I Each processor computes an new partial product of AB and adds it
to what it had from the previous step.

I This process continues until every block of B has been used by
every processor.

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 15 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Performance of Parallel Algorithm 2

CPU operations: Same as for parallel algorithm 1: total time:
O(N3/P).
Communication: Same as for parallel algorithm 1: O(N2 + P).

I With algorithm 1, each processor sent the same message to P − 1
different processors.

I With algorithm 2, for each processor, there is one destination to
which it sends P − 1 different messages.

I Thus, algorithm 2 can work efficiently with simpler interconnect
networks.

Memory: Each process needs O(N2/P) storage for its block of A,
its current block of B, and its block of the result.

I Note: each processor might hold onto its original block of B so we
still have the blocks of B available at the expected processors for
future operations.

Do the memory savings matter?

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 16 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Bad performance, pass it on
Consider what happens with algorithm 2 if one processor, Pslow
takes a bit longer than the others one of the times its doing a block
multiply.

I Pslow will send it’s block from B to its neighbour a bit later than it
would have otherwise.

I Even if the neighbour had finished its previous computation on time,
it won’t be able to start the next one until it gets the block of B from
Pslow .

I Thus, for the next block computation, both Pslow and its neighbour
will be late, even if both of them do their next block computation in
the usual time.

I In other words, tardiness propagates.
Solution: forward your block to you neighbour before you use it to
perform a block computation.

I This overlaps computation with communication, generally a good
idea.

I We could send two or more blocks ahead if needed to compensate
for communication delays and variation in compute times.

I This is a way to save time by using more memory.

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 17 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Tiling in Real-Life

Why? If there’s time, I’ll explain in class.

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 18 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Summary

Matrix multiplication is well-suited for a parallel implementation.
Need to consider communication costs.
In the previous algorithms, computate time grows as N3/P, while
communication time goes as (N2 + P).
Thus, if N is big enough, computation time will dominate
communication time.
Connection of theory with actual run time is pretty good:

I But the matrices have to be big enough to amortize the
communication costs.

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 19 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

Preview

March 24: Matrix Multiplication in CUDA
Homework: HW4 due at 11:59pm

HW5 goes out
March 27: Using Parallel Libraries
March 29: Introduction to Model Checking

Reading: TBA
March 31: The PReach Model Checker

Reading: Industrial Strength . . . Model Checking
April 3: Distributed Termination Detection
April 5: Party: 50th Anniversary of Amdahl’s Law

Mark Greenstreet Matrix Multiplication – Algorithms CS 418 – Mar. 22, 2017 20 / 20

http://www.cs.ubc.ca/~binghamb/papers/pdmc10-camera-ready.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_22
https://en.wikipedia.org/wiki/2017

