Matrix Multiplication - Algorithms

Mark Greenstreet

CpSc 418 - Mar. 22, 2017

Outline:

- Sequential Matrix Multiplication
- Parallel Implementations, Performance, and Trade-Offs.

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are made available under the terms of the Creative Commons Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

Objectives

Apply concepts of algorithm analysis, parallelization, overhead, and performance measurement to a real problem.

- Design sequential and parallel algorithms for matrix multiplication.
- Analyse algorithms and measure performance.
- Identify bottlenecks and refine algorithms.

Matrix representation in Erlang

- I'll represent a matrix as a list of lists.
- For example, the matrix

$$
\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
1 & 4 & 9 & 16 \\
1 & 8 & 27 & 64
\end{array}\right]
$$

is represented by the Erlang nested-list:

$$
\begin{aligned}
& \text { [[1, 2, 3, 4] } \\
& {[1,4,9,16]} \\
& {[1,8,27,64] \text {] }}
\end{aligned}
$$

- The empty matrix is [].
- This means my representation can't distinguish between a 2×0 matrix, a 0×4 matrix, and a 0×0 matrix.
- That's OK. This package is to show some simple examples.
- I'm not claiming it's for advanced scientific computing.

Sequential Matrix Multiplication

```
mult(A, B) ->
    BT = transpose(B),
    lists:map(
        fun(Row_of_A) ->
            lists:map(
            fun(Col_of_B) ->
                        dot_prod(Row_of_A, Col_of_B)
            end, BT)
        end, A).
dot_prod(V1, V2) ->
    lists:foldl(
    fun({X,Y},Sum) -> Sum + X*Y end,
    0, lists:zip(V1, V2)).
```

- Next, we'll use list comprehensions to get a more succinct version.

Matrix Multiplication, with comprehensions

```
mult(A, B) ->
    BT = transpose(B),
    [ [ dot_prod(RowA, ColB) || ColB <- BT ] || RowA <- A].
transpose([]) -> []; % special case for empty matrices
transpose([[]|_]) -> []; % bottom of recursion, the columns are empty
transpose(M) ->
    [ [H | | [H | _T] <- M ] % create a row from the first column of M
        | transpose([ T || [_H | T] <- M ]) % now, transpose what's left
    ] .
```


Performance - Modeled

- Really simple, operation counts:
- Multiplications: n_rows_a *n_cols_b $*$ n_cols_a.
- Additions: n_rows_a $*$ n_cols_b*(n_cols_a - 1).
- Memory-reads: $2 * \#$ Multiplications.
- Memory-writes: n_rows_a*n_cols_b.
- Time is \mathcal{O} (n_rows_a $*$ n_cols_b $*$ n_cols_a), If both matrices are $N \times N$, then its $\mathcal{O}\left(N^{3}\right)$.
- But, memory access can be terrible.
- For example, let matrices a and bo be 1000×1000.
- Assume a processor with a 4M L2-cache (final cache), 32 byte-cache lines, and a 200 cycle stall for main memory accesses.
- Observe that a row of matrix a and a column of b fit in the cache. (a total of $\sim 40 \mathrm{~K}$ bytes).
- But, all of b does not fit in the cache (that's 8 Mbytes).
- So, on every fourth pass through the inner loop, every read from b is a cache miss!
- Cache miss dominates everything else.
- This is why there are carefully tuned numerical libraries.

Performance - Measured

- Cubic of best fit: $T=\left(107 N^{3}+134 N^{2}+173 N-32\right) \mathrm{ns}$.
- Fit to first six data points.
- Cache misses effects are visible, for $\mathrm{N}=1000$:
- model predicts $T=107$ seconds,
- but the measured value is $T=142$ seconds.

Tiling Matrices

An Example

- Let A, B, and $C=A B$ be 16×16 matrices.
- Let $A 1=A[1: 4,1: 16]$, i.e. the first four rows of A.
- In our Erlang represntation, [A1, -] = lists:split (4, A).
- Let $A 2=A[5: 8,1: 16] ; A 3=A[9: 12,1: 16] ;$
$A 4=A[13: 16,1: 16]$; and likewise for $C 1, C 2, C 3$, and $C 4$.
- Big important fact:

$$
\begin{aligned}
& C 1=A 1 B \quad C 2=A 2 B \\
& C 3=A 3 B \quad C 4=A 4 B
\end{aligned}
$$

- In sequential Erlang:

$$
[C 1, C 2, C 3, C 4]=[m u l t(A A, B)| | A A<-A]
$$

- To make it parallel, we compute each of the $C_{I}=A_{I} B$ with a separate process.

Parallel Algorithm 1

Parallel Algorithm 1 in Erlang

\% mult (W, Key, Key1, Key2) - create a matrix associated with Key
\% that is the product of the matrices associated with Key1 and Key2.
mult1 (W, Key, Key1, Key2) ->
Nproc = workers:nworkers(W),
workers:update(W, Key, fun(PS, I) ->
$A=$ workers:get $(P S$, Key 1$)$, $\%$ my rows of A
$B=$ workers: get (PS, Key2), \% my rows of B
[WW ! \{B, I\} || WW <- W], \% send my rows of B to everyone
B_full $=$ lists:append ($\%$ receive B from everyone
[receive $\{B B, J\}->B B$ end
|| $\mathrm{J}<-$ lists:seq(1, Nproc)]),
matrix:mult (A, B_full) \% compute my part of the product end
).

Performance of Parallel Algorithm 1 - Modeled

- CPU operations: same total number of multiplies and adds, but distributed around P processors. Total time: $\mathcal{O}\left(N^{3} / P\right)$.
- Communication: Each processors sends (and receives) P - 1 messages of size N^{2} / P. If time to send a message is $t_{0}+t_{1} * M$ where M is the size of the message, then the communication time is

$$
\begin{aligned}
(P-1)\left(t_{0}+t_{1} \frac{N^{2}}{P}\right) & =\mathcal{O}\left(N^{2}+\lambda P\right),, & & \text { but, beware of large constants } \\
& =\mathcal{O}\left(N^{2}\right), & & N^{2}>P
\end{aligned}
$$

Note: I'm assuming t_{0} corresponds to λ, and that t_{1} is roughly the same as a the time for "typical" sequential operations..

- Memory: Each process needs $\mathcal{O}\left(N^{2} / P\right)$ storage for its block of A and the result. It also needs $\mathcal{O}\left(N^{2}\right)$ to hold all of B.
- The simple algorithm divides the computation across all processors, but it doesn't make good use of their combined memory.

Performance of Parallel Algorithm 1 - Measured

Using Memory more Efficiently

- Main idea: each process works on one "slab" of B at a time.

$$
\begin{array}{ll}
C[i, j] & =\sum_{k=1}^{N} A[i, k] B[k, j], \quad \text { a dot-product } \\
= & \left(\sum_{k=1}^{N / 4} A[i, k] B[k, j]\right)+\left(\sum_{k=(N / 4)+1}^{N / 2} A[i, k] B[k, j]\right) \\
\quad+ & \left(\sum_{k=(N / 2)+1}^{3 N / 4} A[i, k] B[k, j]\right)+\left(\sum_{k=(3 N / 4)+1}^{N} A[i, k] B[k, j]\right)
\end{array}
$$

- Each process does each of its four summations when it holds the corresponding slab of B.
- Each holds one slap of A for the whole computation.
- Each process only needs to hold one slab of B at at time.
- The algorithm generalizes to having any number of slabs for A and B in the obvious way.
- Should be "obvious" if l've explained this clearly.
- If it isn't obvious, that's my bad - please ask a question.

Parallel Algorithm 2 (illustrated)

A
B

Parallel Algorithm 2 (code sketch)

- Each processor first computes what it can with its rows from A and B.
- It can only use N / P of its columns of its block from A.
- It uses its entire block from B.
- We've now computed one of P matrices, where the sum of all of these matrices is the matrix $A B$.
- We view the processors as being arranged in a ring,
- Each processor forwards its block of B to the next processor in the ring.
- Each processor computes an new partial product of $A B$ and adds it to what it had from the previous step.
- This process continues until every block of B has been used by every processor.

Performance of Parallel Algorithm 2

- CPU operations: Same as for parallel algorithm 1: total time: $\mathcal{O}\left(N^{3} / P\right)$.
- Communication: Same as for parallel algorithm 1: $\mathcal{O}\left(N^{2}+P\right)$.
- With algorithm 1, each processor sent the same message to $P-1$ different processors.
- With algorithm 2, for each processor, there is one destination to which it sends $P-1$ different messages.
- Thus, algorithm 2 can work efficiently with simpler interconnect networks.
- Memory: Each process needs $\mathcal{O}\left(N^{2} / P\right)$ storage for its block of A, its current block of B, and its block of the result.
- Note: each processor might hold onto its original block of B so we still have the blocks of B available at the expected processors for future operations.
- Do the memory savings matter?

Bad performance, pass it on

- Consider what happens with algorithm 2 if one processor, $P_{\text {slow }}$ takes a bit longer than the others one of the times its doing a block multiply.
- $P_{\text {slow }}$ will send it's block from B to its neighbour a bit later than it would have otherwise.
- Even if the neighbour had finished its previous computation on time, it won't be able to start the next one until it gets the block of B from $P_{\text {slow }}$.
- Thus, for the next block computation, both $P_{\text {slow }}$ and its neighbour will be late, even if both of them do their next block computation in the usual time.
- In other words, tardiness propagates.
- Solution: forward your block to you neighbour before you use it to perform a block computation.
- This overlaps computation with communication, generally a good idea.
- We could send two or more blocks ahead if needed to compensate for communication delays and variation in compute times.
- This is a way to save time by using more memory.

Tiling in Real-Life

- Why? If there's time, l'll explain in class.

Summary

- Matrix multiplication is well-suited for a parallel implementation.
- Need to consider communication costs.
- In the previous algorithms, computate time grows as N^{3} / P, while communication time goes as $\left(N^{2}+P\right)$.
- Thus, if N is big enough, computation time will dominate communication time.
- Connection of theory with actual run time is pretty good:
- But the matrices have to be big enough to amortize the communication costs.

Preview

March 24: Matrix Multiplication in CUDA
Homework: HW4 due at 11:59pm
HW5 goes out
March 27: Using Parallel Libraries
March 29: Introduction to Model Checking
Reading: TBA
March 31: The PReach Model Checker
Reading: Industrial Strength ... Model Checking
April 3: Distributed Termination Detection
April 5: Party: 50 ${ }^{\text {th }}$ Anniversary of Amdahl's Law

