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Thread Divergence

@ If threads in a warp are following different code paths, execution
will be much slower.

@ See “A Warped Example” from March 13 slides.

Try to minimize thread divergence within warps.
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Remarks about floating point

@ When working on my solution to last year's HW3, Q1,
» | first wrote:
x = alphaxxx (1.0 - x);

» and the performance was disappointing.
» After many frustrating attempts to track down the problem, | added
one, little £:
x = alphaxxx(1.0f - x);

» and my code ran 5.5x faster.
@ What happened?
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Floats, doubles, and GPUs

@ GPUs are optimized for single-precision floating point arithmetic.

@ For the GeForce GTX 550 Ti, double precision arithmetic is way
slower than single precision.

@ InC, 1.0 is a double precision constant, and 1.0f is single
precision.

@ When | wrote x = alphaxx* (1.0-x), the compiler generated

code that:
» computes the product alphax*x.
* both operands are single precision.
* the computation is done using single precision arithmetic.
» computes the difference 1.0-x
* 1.0 is double precision, x is single precision.
* the computation is done using double precision arithmetic
* and the result is double precision.
» computes the product alpha+x*(1.0-X).
* the computation is done using double precision arithmetic
* and the result is double precision.

@ When I wrote x = alphaxx* (1.0f-x), everything stays in
single-precision, and it's much faster.

Greenstreet & Mitchell CUDA: Performance Considerations CPSC 418 — March 17, 2017

4/22


http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017

Fused multiply adds

@ Calculating ax + b is very common
» Example: dot product.
@ The multiplier hardware is just a pipeline of adders.

» When multiplying a»x, the hardware can start the pipeline from b
instead of from 0.
» We get the sum for “free”.
» This is called a fused multiply-add.
@ The marketing people like to count the fused multiply-add as two
floating point operations.
» This helps make some performance claims make sense.
@ For the obsessive compulsive:
» Rounding with a fused-multiply add can be slightly different than
when doing two, separate operations.
» Compilers usually let the users specify “strict” floating point (no

fusing) or “fast” floating point (with fusing).
» nvcc uses fused multiply add unless you give it an option not to.
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Memory Access
Memory is slow.

@ |t takes a long time to identify, access and deliver data to/from a
memory address.
@ Delivery rate is limited by clock rate of the memory interface.

How can we get enough data to/from our thousands of threads?
Parallelism!

@ Retrieve lots of data at once.

@ Use multiple memory interfaces.

@ Build with lots of independent memory components.
All standard techniques in the CPU world, but

@ CPU design philosophy: Try to achieve maximum performance
even if the programmer uses the RAM model.

@ GPU design philosophy: Expose (almost) everything and let the
programmer figure it out.
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Memory System Parallelism 1: Get Lots of Data

Memory is addressed per byte, but you retrieve a bunch of (sequential)
bytes at once.

@ GDDR5 DRAM: 32-bit bus per chip and transfers are in 16 word
bursts (so 64 bytes per access per chip).
@ GPU global memory (from GDDR DRAMSs): Accessed by 32-, 64-
or 128-byte transactions.
» Transactions must be “naturally” aligned: First address must be a
multiple of the transaction size.
» CC 2.x: L1 cache (1 per SM) serviced by 128-byte transactions, L2
cache (shared by SMs) by 32-byte transactions.
» CC 6.x: Same as 2.x, but L1 cache rules are complicated.

@ GPU shared memory (on-chip SRAM): Access in 32-bit words.

Amortize addressing overhead and thereby increase bandwidth.
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Memory System Parallelism 2: Multiple Interfaces

If one memory component cannot give you enough bandwidth, use a
bunch (see March 13 slides).

@ Global memory: K&H(3) calls these “channels” (March 13 slide 2).

@ Shared memory: Mark called these “banks” (March 13 slide 11)
and NVidia documentation does too.

» Do not confuse with K&H(3) “banks” (see next slide).

Consecutive chunks are placed into components in a round-robin
fashion, where “chunk” means

@ 32-bytes (64 more recently?) in global memory.
@ 32- or 64-bits in shared memory.

Separate subsystems can all provide data at their native rate and
thereby increase bandwidth.
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Memory System Parallelism 3: Independent Memory

Components
Even after memory address is delivered, it still takes time for the
DRAM to return the data.
@ Rather than let the memory bus sit idle while waiting, pipeline a
bunch of memory requests to different memory components.
» K&H(3) calls these “banks”.
» Mark called these “tiles”.
@ Consecutive memory chunks are assigned first to channels /
banks (see previous slide).
» These subsystems allow concurrent access because they have
independent communication lines.
@ Then assign next set of consecutive chunks to banks / tiles.
» These subsystems allow sequential but pipelined access because
they share communication lines

Pipelining increases throughput (although latency remains).

@ Only relevant for global memory.
@ Shared memory achieves dramatically lower latency with SRAM.
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Is This on the Final?

No (sort of): This is not a course on memory system design and
implementation.

@ Mark and | are far from experts.

@ Details depend on the particular GPU chip and card, and change
regularly.

@ Program correctness does not depend on getting it right.

Yes (sort of): By following some simple rules, speed can be improved
dramatically.

@ Design global memory access pattern to allow accesses from
threads in the same warp to be coalesced into a single memory
transaction.

@ Design memory access pattern to avoid channel / bank / tile
collisions.
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Implications for Shared Memory

See CUDA Toolkit Documentation C Programming Guide Figure 17
and Figure 18.

@ Consider shared memory address bits:

» 48KB / thread block requires 16 bits to address.

» Bottom two bits specify the byte within a 32-bit word of data.

» Next five bits specify which of 32 banks.

» Top nine bits specify which word within the bank.

@ Key takeaway: If two threads in a warp access a memory location
in the same bank (same middle five bits of address):

» If threads access the same location (same top nine bits), then
broadcast (on read) or one value wins (on write).

» If threads access different location, access is serialized (slower but
still correct).
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Implications for Global Memory

Try to get memory access addresses from threads in a warp to be very
close together.

@ Accesses to consecutive (or nearly so) addresses are coalesced
into a single transaction on the off-chip memory bus.

» You should already be doing this for your CPU designs so that your
caches can take advantage of spatial locality.

@ Best coalescing occurs when the set of addresses is naturally
aligned.

» For two and higher dimensional arrays, that may mean padding
thread block and array width allocation in memory to be a multiple
of the warp size.

@ Possibility of channel / bank collisions would argue for avoiding
addresses with the same “middle” bits.

» | could not find NVidia documentation of these details.

» How do caches interact with channels / banks?

Comments from Mark?
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SMs and Thread Occupancy

@ Occupancy: how many warps are available for the SM
» Why we care: the SP pipelines have long latencies.
» The CUDA approach is to run lots of threads simultaneously to
keep the pipelines busy.
@ Limits to occupancy
» How many blocks per SM.
How much shared-memory per block.
How many threads per block.
How many registers per thread.
@ Figuring it out
» nvcc -03 -c ——-ptxas-options -v examples.cu
» The nVidia occupancy calculator: CUDA_Occupancy_calculator.xls
» But we can do it manually?

vvyy
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Occupancy with CUDA 2.1

@ Different GPUs at level CUDA 2.1 have differing numbers of SMs.
» But the SMs all look the same, even for different GPUs.
@ CUDA 2.1 SMs

» An SM has warps of 32 threads

An SM can simultaneously execute up to 1536 threads (48 warps).
An SM has 32K (2'%) 32-bit registers (128K/bytes, 1K registers/SP).
An SM has 48K bytes of shared memory.

An SM can simultaneously execute up to 8 blocks.

Each block can have up to 1024 threads.

vV vV VY VvYYy
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Why all these numbers?

@ When designing a new generation of GPUs, the GPU architects run lots of
simulations to estimate the performance for various choices of the architectural
parameters.

@ For example, if more warps are allowed in the scheduling pool

» The SM will have useful instructions to dispatch more often = better
performance.

» BUT the on-chip circuitry to hold and manage the scheduling pool will be larger.

» This means instruction scheduling will be slower = a longer clock period.

» Instruction scheduling will use more power = a longer clock period, or fewer
SMs, or more expensive chip cooling.

» The real-estate on the chip could have been used for something else. Is this the
best use of that area.

» Note that CUDA 5 made the increase to 64 warps/SM.

@ Architects explore these trade-offs to optimize performance for graphics
applications, the main source of revenue.

@ Architects are also risk-adverse: make the chip as much like the last one that
worked as you can.

@ These hard-wired constraints have a large impact on program performance.
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SMs, blocks, and threads

@ A SM can have simultaneously execute most 8 blocks.
@ All blocks have the same number of threads.
@ Thus, a SM can execute at most

min (8 1536
" | threadsPerBlock

blocks.

@ The ratio of the number of threads executing to the maximum

possible is called the “thread occupancy”:

threadOccupancy <
min <8 { 1536 J) threadsPerBlock

threadsPerBlock 1536
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SMs, blocks, and threads — the plot

occupancy vs. threads per block

% Occupancy

00 500 800
threads per block

@ | get 100% occupancy when threadsPerBlock € {192, 384, 768},
but the CUDA calculator doesn’t.
» I'll have to try some experiments — stay tuned.
@ This assumes the grid had enough blocks to keep the SMs busy.
» A grid with a single block will have poor performance.
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SMs, threads, and registers

@ Each SM has 32K registers — that’s 1K registers per SP.
@ This is another constraint:

1024

ks <
nblks registersPerThread

@ An SM can run 48 warps simultaneously
» But only if each warp uses at most 21 registers.
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Hitting the register constraint
What if each thread uses 22 registers?
@ 22%x48 = 1056 > 1024 — can’t run 48 warps.
° L%J = |46.54] = 46.
@ Can we run 46 warps?
» One block with 46 warps would have 46 x 32 = 1472 > 1024

threads. Not allowed.

» Two block with 23 warps each would each have 736 threads. That
should work.

» But, the plot with the occupancy calculator only shows warp counts
that are multiples of 8.
» Have | overlooked another architectural constraint?

* probably
@ Let’'s assume that with 23 registers per thread, the SM can run at
most 40 warps simultaneously.

» Then either each thread must have enough instruction-level
parallelism to keep the SPs busy.
» Or, we'll see a drop in performance.
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How many registers does my thread use?

@ use the -—ptxas-options —v option for nvcc

nvcc--ptxas-options -v -03 -c examples.cu

ptxas info : 0 bytes gmem
ptxas info : Compiling entry function ’_Z8shmem_2jiiPj’ for ’'sm.20’
ptxas info : Function properties for _Z8sh.mem_ 23jiiPj

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 17 registers, 4096 bytes smem, 56 bytes cmem[0]
ptxas info : Compiling entry function ’_Z8shmem_1jiiPj’ for ’sm-20’
ptxas info : Function properties for _Z8sh.mem_1jiiPj

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 14 registers, 4096 bytes smem, 56 bytes cmem[0]

@ Translation:

» kernel sh_mem_2 uses 17 registers per thread.

» kernel sh_mem_1 uses 14 registers per thread.

» both kernels use 4024 bytes of shared memory per block.
» neither kernel spills registers to global memory (good).
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Granularity

How much work should a kernel do?

@ Do more work within a kernel: Launching each kernel takes time.

@ Do less work within a kernel: New kernels allow for changes in
block and grid size, and ensure synchronization between threads
even in different blocks.

@ Either way: Minimize movement of data to and from the host.
How much work should a thread do?
@ Do more work in a single thread: Fewer chances for memory
collisions, easier synchronization, less register contention.

@ Do less work in a single thread: More potential parallelism, more
chance for latency hiding.

@ Tradeoff will depend on GPU resources, typically SM block, thread
and register limits.
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Bigger Kernels

_global_myKernel(...) {
do something
}

Unless do something is big, kernel launch takes most of the time.

@ We can launch a big-grid

» If we have a huge number of array elements than each need a

small amount of work, this can be a good idea.

» BUT we're likely to create a memory-bound problem.

@ Or, we can make each thread do many somethings.
_global_myKernel (int m, ...) {
for(int 1 = 0; 1 < m; i++)
do something
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Loop Limitations

@ |t takes two or three instructions per loop iteration to manage the
loop:
» One to update the loop index
» One or two to check the loop bounds and branch.
» If do something is only three or four instructions, then 40-50% of
the execution time is for loop management.
@ If each iteration of do something depends on the previous one

» Then the long latency of the SP pipelines can limit performance.
» Even if we have 48 warps running.
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Loop Unrolling

@ Have each loop iteration perform multiple copies of the loop body

_global_myKernel (int m, ...) {
for(int 1 = 0; 1 < m; i += 4) {
do something 1
do something 2
do something 3

do something 4

@ More “real work” for each time the loop management code is
executed.

@ Need to make sure that m is a multiple of four, or handle
end-cases separately.

@ Often, we need more registers.
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Unrolling — the plots

FLOPS vs. unrolling depth
execution time vs. unrolling depth 26 . PS vs. unrolling dept

execution time (normalized)
&
FLOPS (normalized)

sk

s 2 25 B a5 7 a5 s 55 6 15 2 25 3 35 4 45 5 55 6
unrolling unrolling

This example is from last year's HW3, Q1.
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Where’s \?

@ Communication between the CPU and GPU
» Kernel launch overhead
» Transfering data between CPU memory and GPU memory

* |s this solved with more recent GPUs that can access the CPU
memory directly?

* Not really, the data still needs to be transfered.

* And it's one more memory level for the programmer to keep track of.

@ Communication between blocks
» Write global memory and end the kernel.
» Launch a new kernel and read the global memory.
» The same strategy applies if the shape for the required grid
changes between phases of a larger computation.
@ Communication between warps in a block
» _syncthreads__
@ AND,
» There’s a built-in energy cost of the big register file.
» Trade-offs of energy, latency, and parallelism. large numbers of
threads.
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Preview

March 20: Matrix multiplication, Part 1
March 22: Matrix multiplication, Part 2
March 24: Complete CUDA

March 27 — April 3: this may change

March 27: Using Parallel Libraries

March 29 — April 3: Verification of/and Parallel Programs
April 5: Party: 50" Anniversary of Amdahl’s Law
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