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Thread Divergence

If threads in a warp are following different code paths, execution
will be much slower.
See “A Warped Example” from March 13 slides.

Try to minimize thread divergence within warps.
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Remarks about floating point

When working on my solution to last year’s HW3, Q1,
I I first wrote:

x = alpha*x*(1.0 - x);

I and the performance was disappointing.
I After many frustrating attempts to track down the problem, I added

one, little f:
x = alpha*x*(1.0f - x);

I and my code ran 5.5⇥ faster.

What happened?
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Floats, doubles, and GPUs
GPUs are optimized for single-precision floating point arithmetic.
For the GeForce GTX 550 Ti, double precision arithmetic is way
slower than single precision.
In C, 1.0 is a double precision constant, and 1.0f is single
precision.
When I wrote x = alpha*x*(1.0-x), the compiler generated
code that:

I computes the product alpha*x.
F both operands are single precision.
F the computation is done using single precision arithmetic.

I computes the difference 1.0-x
F 1.0 is double precision, x is single precision.
F the computation is done using double precision arithmetic
F and the result is double precision.

I computes the product alpha*x*(1.0-x).
F the computation is done using double precision arithmetic
F and the result is double precision.

When I wrote x = alpha*x*(1.0f-x), everything stays in
single-precision, and it’s much faster.
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Fused multiply adds

Calculating ax + b is very common
I Example: dot product.

The multiplier hardware is just a pipeline of adders.
I When multiplying a*x, the hardware can start the pipeline from b

instead of from 0.
I We get the sum for “free”.
I This is called a fused multiply-add.

The marketing people like to count the fused multiply-add as two

floating point operations.
I This helps make some performance claims make sense.

For the obsessive compulsive:
I Rounding with a fused-multiply add can be slightly different than

when doing two, separate operations.
I Compilers usually let the users specify “strict” floating point (no

fusing) or “fast” floating point (with fusing).
I nvcc uses fused multiply add unless you give it an option not to.
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Memory Access
Memory is slow.

It takes a long time to identify, access and deliver data to/from a
memory address.
Delivery rate is limited by clock rate of the memory interface.

How can we get enough data to/from our thousands of threads?
Parallelism!

Retrieve lots of data at once.
Use multiple memory interfaces.
Build with lots of independent memory components.

All standard techniques in the CPU world, but

CPU design philosophy: Try to achieve maximum performance
even if the programmer uses the RAM model.
GPU design philosophy: Expose (almost) everything and let the
programmer figure it out.
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Memory System Parallelism 1: Get Lots of Data

Memory is addressed per byte, but you retrieve a bunch of (sequential)
bytes at once.

GDDR5 DRAM: 32-bit bus per chip and transfers are in 16 word
bursts (so 64 bytes per access per chip).
GPU global memory (from GDDR DRAMs): Accessed by 32-, 64-
or 128-byte transactions.

I Transactions must be “naturally” aligned: First address must be a
multiple of the transaction size.

I CC 2.x: L1 cache (1 per SM) serviced by 128-byte transactions, L2
cache (shared by SMs) by 32-byte transactions.

I CC 6.x: Same as 2.x, but L1 cache rules are complicated.

GPU shared memory (on-chip SRAM): Access in 32-bit words.

Amortize addressing overhead and thereby increase bandwidth.
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Memory System Parallelism 2: Multiple Interfaces

If one memory component cannot give you enough bandwidth, use a
bunch (see March 13 slides).

Global memory: K&H(3) calls these “channels” (March 13 slide 2).
Shared memory: Mark called these “banks” (March 13 slide 11)
and NVidia documentation does too.

I Do not confuse with K&H(3) “banks” (see next slide).

Consecutive chunks are placed into components in a round-robin
fashion, where “chunk” means

32-bytes (64 more recently?) in global memory.
32- or 64-bits in shared memory.

Separate subsystems can all provide data at their native rate and
thereby increase bandwidth.
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Memory System Parallelism 3: Independent Memory
Components
Even after memory address is delivered, it still takes time for the
DRAM to return the data.

Rather than let the memory bus sit idle while waiting, pipeline a
bunch of memory requests to different memory components.

I K&H(3) calls these “banks”.
I Mark called these “tiles”.

Consecutive memory chunks are assigned first to channels /
banks (see previous slide).

I These subsystems allow concurrent access because they have
independent communication lines.

Then assign next set of consecutive chunks to banks / tiles.
I These subsystems allow sequential but pipelined access because

they share communication lines

Pipelining increases throughput (although latency remains).
Only relevant for global memory.
Shared memory achieves dramatically lower latency with SRAM.
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Is This on the Final?

No (sort of): This is not a course on memory system design and
implementation.

Mark and I are far from experts.
Details depend on the particular GPU chip and card, and change
regularly.
Program correctness does not depend on getting it right.

Yes (sort of): By following some simple rules, speed can be improved
dramatically.

Design global memory access pattern to allow accesses from
threads in the same warp to be coalesced into a single memory
transaction.
Design memory access pattern to avoid channel / bank / tile
collisions.
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Implications for Shared Memory

See CUDA Toolkit Documentation C Programming Guide Figure 17
and Figure 18.

Consider shared memory address bits:
I 48KB / thread block requires 16 bits to address.
I Bottom two bits specify the byte within a 32-bit word of data.
I Next five bits specify which of 32 banks.
I Top nine bits specify which word within the bank.

Key takeaway: If two threads in a warp access a memory location
in the same bank (same middle five bits of address):

I If threads access the same location (same top nine bits), then
broadcast (on read) or one value wins (on write).

I If threads access different location, access is serialized (slower but
still correct).
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Implications for Global Memory
Try to get memory access addresses from threads in a warp to be very
close together.

Accesses to consecutive (or nearly so) addresses are coalesced
into a single transaction on the off-chip memory bus.

I You should already be doing this for your CPU designs so that your
caches can take advantage of spatial locality.

Best coalescing occurs when the set of addresses is naturally
aligned.

I For two and higher dimensional arrays, that may mean padding
thread block and array width allocation in memory to be a multiple
of the warp size.

Possibility of channel / bank collisions would argue for avoiding
addresses with the same “middle” bits.

I I could not find NVidia documentation of these details.
I How do caches interact with channels / banks?

Comments from Mark?

Greenstreet & Mitchell CUDA: Performance Considerations CPSC 418 – March 17, 2017 12 / 22

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


SMs and Thread Occupancy

Occupancy: how many warps are available for the SM
I Why we care: the SP pipelines have long latencies.
I The CUDA approach is to run lots of threads simultaneously to

keep the pipelines busy.
Limits to occupancy

I How many blocks per SM.
I How much shared-memory per block.
I How many threads per block.
I How many registers per thread.

Figuring it out
I nvcc -O3 -c --ptxas-options -v examples.cu
I The nVidia occupancy calculator: CUDA Occupancy calculator.xls
I But we can do it manually?
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Occupancy with CUDA 2.1

Different GPUs at level CUDA 2.1 have differing numbers of SMs.
I But the SMs all look the same, even for different GPUs.

CUDA 2.1 SMs
I An SM has warps of 32 threads
I An SM can simultaneously execute up to 1536 threads (48 warps).
I An SM has 32K (215) 32-bit registers (128K/bytes, 1K registers/SP).
I An SM has 48K bytes of shared memory.
I An SM can simultaneously execute up to 8 blocks.
I Each block can have up to 1024 threads.
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Why all these numbers?
When designing a new generation of GPUs, the GPU architects run lots of
simulations to estimate the performance for various choices of the architectural
parameters.
For example, if more warps are allowed in the scheduling pool

I The SM will have useful instructions to dispatch more often ) better
performance.

I
BUT the on-chip circuitry to hold and manage the scheduling pool will be larger.

I This means instruction scheduling will be slower ) a longer clock period.
I Instruction scheduling will use more power ) a longer clock period, or fewer

SMs, or more expensive chip cooling.
I The real-estate on the chip could have been used for something else. Is this the

best use of that area.
I Note that CUDA 5 made the increase to 64 warps/SM.

Architects explore these trade-offs to optimize performance for graphics
applications, the main source of revenue.
Architects are also risk-adverse: make the chip as much like the last one that
worked as you can.
These hard-wired constraints have a large impact on program performance.
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SMs, blocks, and threads

A SM can have simultaneously execute most 8 blocks.
All blocks have the same number of threads.
Thus, a SM can execute at most

min
✓

8,
�

1536
threadsPerBlock

⌫◆

blocks.
The ratio of the number of threads executing to the maximum
possible is called the “thread occupancy”:

threadOccupancy 

min
✓

8,
�

1536
threadsPerBlock

⌫◆
threadsPerBlock

1536
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SMs, blocks, and threads – the plot
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I get 100% occupancy when threadsPerBlock 2 {192, 384, 768},
but the CUDA calculator doesn’t.

I I’ll have to try some experiments – stay tuned.
This assumes the grid had enough blocks to keep the SMs busy.

I A grid with a single block will have poor performance.
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SMs, threads, and registers

Each SM has 32K registers – that’s 1K registers per SP.
This is another constraint:

nblks  1024
registersPerThread

An SM can run 48 warps simultaneously
I But only if each warp uses at most 21 registers.
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Hitting the register constraint
What if each thread uses 22 registers?

22 ⇤ 48 = 1056 > 1024 ! can’t run 48 warps.
⌅1024

22
⇧
= b46.54c = 46.

Can we run 46 warps?
I One block with 46 warps would have 46 ⇤ 32 = 1472 > 1024

threads. Not allowed.
I Two block with 23 warps each would each have 736 threads. That

should work.
I But, the plot with the occupancy calculator only shows warp counts

that are multiples of 8.
I Have I overlooked another architectural constraint?

F probably

Let’s assume that with 23 registers per thread, the SM can run at
most 40 warps simultaneously.

I Then either each thread must have enough instruction-level
parallelism to keep the SPs busy.

I Or, we’ll see a drop in performance.
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How many registers does my thread use?

use the --ptxas-options -v option for nvcc
nvcc--ptxas-options -v -O3 -c examples.cu
ptxas info : 0 bytes gmem
ptxas info : Compiling entry function ’ Z8sh mem 2jiiPj’ for ’sm 20’
ptxas info : Function properties for Z8sh mem 2jiiPj

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 17 registers, 4096 bytes smem, 56 bytes cmem[0]
ptxas info : Compiling entry function ’ Z8sh mem 1jiiPj’ for ’sm 20’
ptxas info : Function properties for Z8sh mem 1jiiPj

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 14 registers, 4096 bytes smem, 56 bytes cmem[0]

Translation:
I kernel sh mem 2 uses 17 registers per thread.
I kernel sh mem 1 uses 14 registers per thread.
I both kernels use 4024 bytes of shared memory per block.
I neither kernel spills registers to global memory (good).
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Granularity
How much work should a kernel do?

Do more work within a kernel: Launching each kernel takes time.
Do less work within a kernel: New kernels allow for changes in
block and grid size, and ensure synchronization between threads
even in different blocks.
Either way: Minimize movement of data to and from the host.

How much work should a thread do?

Do more work in a single thread: Fewer chances for memory
collisions, easier synchronization, less register contention.
Do less work in a single thread: More potential parallelism, more
chance for latency hiding.
Tradeoff will depend on GPU resources, typically SM block, thread
and register limits.
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Bigger Kernels

global myKernel(. . .) {
do something

}

Unless do something is big, kernel launch takes most of the time.
We can launch a big-grid

I If we have a huge number of array elements than each need a
small amount of work, this can be a good idea.

I BUT we’re likely to create a memory-bound problem.
Or, we can make each thread do many somethings.

global myKernel(int m, . . .) {
for(int i = 0; i < m; i++)

do something
}
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Loop Limitations

It takes two or three instructions per loop iteration to manage the
loop:

I One to update the loop index
I One or two to check the loop bounds and branch.
I If do something is only three or four instructions, then 40-50% of

the execution time is for loop management.
If each iteration of do something depends on the previous one

I Then the long latency of the SP pipelines can limit performance.
I Even if we have 48 warps running.
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Loop Unrolling

Have each loop iteration perform multiple copies of the loop body
global myKernel(int m, . . .) {
for(int i = 0; i < m; i += 4) {

do something 1
do something 2
do something 3
do something 4

}
}

More “real work” for each time the loop management code is
executed.
Need to make sure that m is a multiple of four, or handle
end-cases separately.
Often, we need more registers.
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Unrolling – the plots
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This example is from last year’s HW3, Q1.
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Where’s �?
Communication between the CPU and GPU

I Kernel launch overhead
I Transfering data between CPU memory and GPU memory

F Is this solved with more recent GPUs that can access the CPU
memory directly?

F Not really, the data still needs to be transfered.
F And it’s one more memory level for the programmer to keep track of.

Communication between blocks
I Write global memory and end the kernel.
I Launch a new kernel and read the global memory.
I The same strategy applies if the shape for the required grid

changes between phases of a larger computation.
Communication between warps in a block

I
syncthreads

AND,
I There’s a built-in energy cost of the big register file.
I Trade-offs of energy, latency, and parallelism. large numbers of

threads.
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Preview

March 20: Matrix multiplication, Part 1
March 22: Matrix multiplication, Part 2
March 24: Complete CUDA

March 27 – April 3: this may change
March 27: Using Parallel Libraries
March 29 – April 3: Verification of/and Parallel Programs
April 5: Party: 50th Anniversary of Amdahl’s Law
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