
CUDA: Performance Considerations

Mark Greenstreet & Ian Mitchell

CpSc 418 – Mar. 17, 2017

Floating Point Foibles
Shared Memory Accesses
Global Memory Accesses
Occupancy
Instruction Mix

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 1 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs417
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Remarks about floating point

When working on my solution to last year’s HW3, Q1,
I I first wrote:

x = alpha*x*(1.0 - x);

I and the performance was disappointing.
I After many frustrating attempts to track down the problem, I added

one, little f:
x = alpha*x*(1.0f - x);

I and my code ran 5.5× faster.

What happened?

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 2 / 19

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/index.html
http://www.ugrad.cs.ubc.ca/~cs418/2015-2/hw/3/hw3.pdf
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Floats, doubles, and GPUs
GPUs are optimized for single-precision floating point arithmetic.
For the GeForce GTX 550 Ti, double precision arithmetic is way
slower than single precision.
In C, 1.0 is a double precision constant, and 1.0f is single
precision.
When I wrote x = alpha*x*(1.0-x), the compiler generated
code that:

I computes the product alpha*x.
F both operands are single precision.
F the computation is done using single precision arithmetic.

I computes the difference 1.0-x
F 1.0 is double precision, x is single precision.
F the computation is done using double precision arithmetic
F and the result is double precision.

I computes the product alpha*x*(1.0-x).
F the computation is done using double precision arithmetic
F and the result is double precision.

When I wrote x = alpha*x*(1.0f-x), everything stays in
single-precision, and it’s much faster.

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 3 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Fused multiply adds
Calculating ax + b is very common

I Example: dot product.
The multiplier hardware is just a pipeline of adders.

I When multiplying a*x, the hardware can start the pipeline from b
instead of from 0.

I We get the sum for “free”.
I This is called a fused multiply-add.

The marketing people like to count the fused multiply-add as two
floating point operations.

I This helps make some performance claims make sense.
For the obsessive compulsive:

I Rounding with a fused-multiply add can be slightly different than
when doing two, separate operations.

I Compilers usually let the users specify “strict” floating point (no
fusing) or “fast” floating point (with fusing).

I nvcc uses fused multiply add unless you give it an option not to.
I Note: this doesn’t affect the problems for HW3.

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 4 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Shared Memory

See the March 16 lecture.
Shared memory is fast, on-chip memory.

I Shared memory is much faster than global memory.
Global memory is off-chip GDDR

I coalescing references has a large impact on performance
An example, and lessons learned

I The example: shared-memory bank conflicts
I Lessons learned

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 5 / 19

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/03-16/slides.pdf
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Global memory: coalescing references

GPUs have relatively high off-chip memory bandwidth
I compared with CPUs
I still much slower than accessing registers or shared-memory with

good interleaving.

If all the warps in a thread access consecutive locations in the
same load, the GPU can access the memory much faster than
with random accesses.
I tried modifying the code from examples.cu (March 16).

I global memory is definitely slower than registers or shared memory.
I coalesced accesses to global memory are faster than worst-case

bank collisions with the shared memory.
I I need to do more experiments to understand the on chip caches.

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 6 / 19

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/03-16/examples.pdf
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


SMs and Thread Occupancy

Occupancy: how many warps are available for the SM
I Why we care: the SP pipelines have long latencies.
I The CUDA approach is to run lots of threads simultaneously to

keep the pipelines busy.
Limits to occupancy

I How many blocks per SM.
I How much shared-memory per block.
I How many threads per block.
I How many registers per thread.

Figuring it out
I nvcc -O3 -c --ptxas-options -v examples.cu
I The nVidia occupancy calculator: CUDA Occupancy calculator.xls
I But we can do it manually?

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 7 / 19

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Occupancy with CUDA 2.1

Different GPUs at level CUDA 2.1 have differing numbers of SMs.
I But the SMs all look the same.
I Even for different GPUs.

CUDA 2.1 SMs
I An SM has warps of 32 threads
I An SM can simultaneously execute up to 1536 threads (48 warps).
I An SM has 32K (215) 32-bit registers (128K/bytes, 1K registers/SP).
I An SM has 48K bytes of shared memory.
I An SM can simultaneously execute up to 8 blocks.
I Each block can have up to 1024 threads.

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 8 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Why all these numbers?
When designing a new generation of GPUs, the GPU architects run lots of
simulations to estimate the performance for various choices of the architectural
parameters.
For example, if more warps are allowed in the scheduling pool

I The SM will have useful instructions to dispatch more often⇒ better
performance.

I BUT the on-chip circuitry to hold and manage the scheduling pool will be larger.
I This means instruction scheduling will be slower⇒ a longer clock period.
I Instruction scheduling will use more power⇒ a longer clock period, or fewer

SMs, or more expensive chip cooling.
I The real-estate on the chip could have been used for something else. Is this the

best use of that area.
I Note that CUDA 5 made the increase to 64 warps/SM.

Architects explore these trade-offs to optimize performance for graphics
applications, the main source of revenue.
Architects are also risk-adverse: make the chip as much like the last one that
worked as you can.
These hard-wired constraints have a large impact on program performance.

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 9 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


SMs, blocks, and threads

A SM can have simultaneously execute most 8 blocks.
All blocks have the same number of threads.
Thus, a SM can execute at most

min
(

8,
⌊

1536
threadsPerBlock

⌋)
blocks.
The ratio of the number of threads executing to the maximum
possible is called the “thread occupancy”:

threadOccupancy ≤

min
(

8,
⌊

1536
threadsPerBlock

⌋)
threadsPerBlock

1536

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 10 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


SMs, blocks, and threads – the plot

threads per block
0 200 400 600 800 1000 1200

%
 O

cc
up

an
cy

10

20

30

40

50

60

70

80

90

100
occupancy vs. threads per block

I get 100% occupancy when threadsPerBlock ∈ {192,384,768},
but the CUDA calculator doesn’t.

I I’ll have to try some experiments – stay tuned.
This assumes the grid had enough blocks to keep the SMs busy.

I A grid with a single block will have poor performance.

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 11 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


SMs, threads, and registers

Each SM has 32K registers – that’s 1K registers per SP.
This is another constraint:

nblks ≤ 1024
registersPerThread

An SM can run 48 warps simultaneously
I But only if each warp uses at most 21 registers.

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 12 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Hitting the register constraint
What if each thread uses 22 registers?

22 ∗ 48 = 1056 > 1024 → can’t run 48 warps.⌊1024
22

⌋
= b46.54c = 46.

Can we run 46 warps?
I One block with 46 warps would have 46 ∗ 32 = 1472 > 1024

threads. Not allowed.
I Two block with 23 warps each would each have 736 threads. That

should work.
I But, the plot with the occupancy calculator only shows warp counts

that are multiples of 8.
I Have I overlooked another architectural constraint?

F probably

Let’s assume that with 23 registers per thread, the SM can run at
most 40 warps simultaneously.

I Then either each thread must have enough instruction-level
parallelism to keep the SPs busy.

I Or, we’ll see a drop in performance.

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 13 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


How many registers does my thread use?

use the --ptxas-options -v option for nvcc
nvcc--ptxas-options -v -O3 -c examples.cu
ptxas info : 0 bytes gmem
ptxas info : Compiling entry function ’ Z8sh mem 2jiiPj’ for ’sm 20’
ptxas info : Function properties for Z8sh mem 2jiiPj

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 17 registers, 4096 bytes smem, 56 bytes cmem[0]
ptxas info : Compiling entry function ’ Z8sh mem 1jiiPj’ for ’sm 20’
ptxas info : Function properties for Z8sh mem 1jiiPj

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 14 registers, 4096 bytes smem, 56 bytes cmem[0]

Translation:
I kernel sh mem 2 uses 17 registers per thread.
I kernel sh mem 1 uses 14 registers per thread.
I both kernels use 4096 bytes of shared memory per block.
I neither kernel spills registers to global memory (good).

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 14 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Instruction Mix

We measure our program performance in terms of the critical,
unavoidable operations

I Typically “floating point operations” for matrix-multiplication or other
scientific computing applications.

I Often main memory accesses for sorting, or other data-intensive
applications.

But, the program does other operations as well
I This is where you see me counting instructions on my fingers

during lecture.
I Optimizing performance can involve minimizing this overhead:

F Good algorithm design.
F Memory access optimization.
F Loop unrolling

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 15 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Bigger Kernels

global myKernel(. . .) {
do something

}

Unless do something is big, kernel launch takes most of the time.
We can launch a big-grid

I If we have a huge number of array elements than each need a
small amount of work, this can be a good idea.

I BUT we’re likely to create a memory-bound problem.
Or, we can make each thread do many somethings.

global myKernel(int m, . . .) {
for(int i = 0; i < m; i++)

do something
}

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 16 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Loop Limitations

It takes two or three instructions per loop iteration to manage the
loop:

I One to update the loop index
I One or two to check the loop bounds and branch.
I If do something is only three or four instructions, then 40-50% of

the execution time is for loop management.
If each iteration of do something depends on the previous one

I Then the long latency of the SP pipelines can limit performance.
I Even if we have 48 warps running.

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 17 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Loop Unrolling

Have each loop iteration perform multiple copies of the loop body
global myKernel(int m, . . .) {
for(int i = 0; i < m; i += 4) {

do something 1
do something 2
do something 3
do something 4

}
}

More “real work” for each time the loop management code is
executed.
Need to make sure that m is a multiple of four, or handle
end-cases separately.
Often, we need more registers.

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 18 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Unrolling – the plots

unrolling
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

ex
ec

ut
io

n 
tim

e 
(n

or
m

al
iz

ed
)

1

1.5

2

2.5

3

3.5

4
execution time vs. unrolling depth

unrolling
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

FL
O

PS
 (n

or
m

al
iz

ed
)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
FLOPS vs. unrolling depth

This example is from last year’s HW3, Q1.

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 19 / 19

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/index.html
http://www.ugrad.cs.ubc.ca/~cs418/2015-2/hw/3/hw3.pdf
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017


Preview

March 20: Matrix multiplication, Part 1
March 22: Matrix multiplication, Part 2
March 24: Complete CUDA

March 27 – April 3: colorred this may change
March 27: Using Parallel Libraries
March 29 – April 3: Verification of/and Parallel Programs
April 5: Party: 50th Anniversary of Amdahl’s Law

Greenstreet & Mitchell CUDA: Performance Considerations CS 418 – Mar. 17, 2017 20 / 19

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_17
https://en.wikipedia.org/wiki/2017

