
CUDA Threads

Mark Greenstreet & Ian M. Mitchell

CPSC 418 – March 8 & March 10, 2017

Kernel organization: grids, blocks & threads.
Hardware organization: SMs, SPs & warps.

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet & Ian M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 1 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_08
https://en.wikipedia.org/wiki/March_10
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


Compute Capability

Lots of nVidia jargon here.
Lots of very specific constraints on hardware capabilities.
Values of those constraints depend on the compute capability:
essentially a version number for the GPU hardware.

I CS department lab ({lin01, lin02, . . . ,
lin25}.ugrad.cs.ubc.ca) has GeForce GTX 550 Ti which
feature compute capability 2.1.

I Examples of recent GPUs:
F Compute capability 3.5: GT 730 & GTX 780.
F Compute capability 5.0: GTX 750, 8xxM & 960M.
F Compute capability 5.2: GTX 9xx, 965M.
F Compute capability 6.1: GTX 10xx.

I More details at the CUDA wikipedia page.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 2 / 20

https://en.wikipedia.org/wiki/CUDA
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


Thread organization: Grids, Blocks and Threads

When a kernel is launched, it creates a collection of threads.
This collection is called a grid.

I A grid is organized as an array of blocks
I Each block is an array of threads
I Array sizes are fixed once a kernel is launched.

Why so many details?
I Switching between blocks is done (I infer) by software in the GPU.
I Switching between threads in a block is done by hardware.
I By distinguishing blocks from threads, the CUDA model exposes

the performance issues to the programmer.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 3 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


A grid is an array of blocks

(1,0) (2,0) (3,0) (4,0) (5,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,0)

A grid

Blocks are scheduled by the GPU software.
Blocks can be arranged as 1D, 2D or 3D array.

I Dimensions are called “x”, “y” and “z”.
There can be lots of blocks:

I Each dimension can be up to 216 − 1 = 65535.
I CC 3.0+ allows x dimension up to 231 − 1 blocks.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 4 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


Each block is an array of threads

(3,1) (4,1) (5,1)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(0,0,0)

(0,1,0)

(0,2,0)

(0,3,0)

(0,4,0)

(1,0,0)

(1,1,0)

(1,2,0)

(1,3,0)

(1,4,0)

(2,0,0)

(2,1,0)

(2,2,0)

(2,3,0)

(2,4,0)

(0,0) (1,0) (2,0) (3,0) (4,0)
(5,0)

Blocks

(0,1)

Threads

(1,1) (2,1)

Where do they put all those threads?

Threads are scheduled by the GPU hardware.
Threads can be arranged as a 1D, 2D, or 3D array

I Grid and block dimensions and sizes may be different.
There can be a moderate number of threads in each dimension:

I x or y up to 1024 threads.
I z up to 64 threads.

However, total number of threads per block (product of all
dimensions) is also capped at 1024.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 5 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


Threads and blocks: launching a kernel

Let’s say we have:
global void kernel fun(args)

To launch this kernel, we execute a statement like:
kernel fun<<<dimGrid, dimBlock>>>(actuals);

where
I dimGrid specifies the dimension(s) of the grid (an array of blocks):

F dimGrid can be an int, in which case the array is 1D.
F dimGrid can be a dim3, for example:

dim3(6,4,1)
I dimBlock specifies the dimension(s) of each block (an array of

threads):
F dimBlock can be an int or a dim3.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 6 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


Threads and Blocks within a Kernel’s Grid

Within a running kernel, CUDA-C provides four built-in variables to
determine the position of a thread within the grid: blockDim,
blockIdx, threadDim, and threadIdx.
There is a naming pattern:

I Each of these structures has three fields: x, y and z corresponding
to the three possible dimensions.

I blockDim.? gives the size of the grid in each dimension x, y or z.
I threadDim.? gives the size of each block in each dimension.
I blockIdx.? gives the indices of the thread’s block within the grid.
I threadIdx.? gives the indices of the thread within its block.

For dimensions which are absent:
I blockDim or threadDim will be 1.
I blockIdx or threadIdx will be 0.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 7 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


Threads and Blocks: Where are We?

Note the constraints:

0 ≤ blockIdx.x < blockDim.x

0 ≤ blockIdx.y < blockDim.y

0 ≤ blockIdx.z < blockDim.z

0 ≤ threadIdx.x < threadDim.x

0 ≤ threadIdx.y < threadDim.y

0 ≤ threadIdx.z < threadDim.z

Because the size of blocks are limited, it is common to use code
such as:

uint my idx = blockDim.x*blockIdx.x + threadIdx.x;

to combine the block and thread indices into a single index.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 8 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


Bounds checking: launching kernels

Consider executing kernel fun on an array of n elements.
Because n might be large, we’ll use n/256 blocks of 256 threads.

I THINK: what if n is not a multiple of 256?
I We’ll round up to make sure we have enough threads.

The kernel launch looks like:
kernel fun<<<ceil(n/256.0), 256>>>(n, myArray);

I Why divide by 256.0 instead of 256?
I Why use ceil?

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 9 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


Bounds checking: in the kernel

The kernel launch looks like:
kernel fun<<<ceil(n/256.0), 256>>>(n, myArray);

THINK: what if n is not a multiple of 256?
I We’ll launch more than n threads?
I For example, if n==1000, then we’ll launch 4 blocks of 256 threads.

A total of 1024 threads.
I What will the last 24 threads do?

Add a test:
uint my idx = blockDim.x*blockIdx.x + threadIdx.x;
if(my idx < n) {

...
}

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 10 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


SMs, SPs and Warps (oh my!)

Each streaming multiprocessor (SM) has multiple streaming
processors (SPs) and can be responsible for multiple groups of 32
threads called warps.

I From the New Oxford American Dictionary : (the) “warp” is “the
threads on a loom over and under which other threads (the weft)
are passed to make cloth”

Details, details. . .
I These concepts are not part of the CUDA platform and API: Code

is written in terms of a grid of blocks of threads.
I You can write correct code without thinking about these details.
I If you want to write fast code, you must take them into account.
I The block vs grid structure exposes these details if you want to take

advantage of them.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 11 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


SMs, SPs and Warps: What are They?

Each streaming multiprocessor (SM) in the GPU executes threads
in SIMD fashion.

I All threads in a block are assigned to the same SM.
I Each SM has a single (or small number of?) instruction fetch unit(s)

and a larger number of execution units.
Each SM has multiple streaming processors (SPs) that actually
execute an instruction.

I The SPs are specialized: ALUs, load / store, special function units.
I A single SP can perform a single operation on a small set of

threads.

A warp is a collection of 32 threads that execute together on the
same SP.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 12 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


SMs, SPs and Warps: Why do We Care?

Fill your warps: Ensure the number of threads in a block is a
multiple of the warp size to avoid idle hardware.
Have lots of warps: If one warp is waiting on a long latency
operation, the SM can find another warp to execute.

I Provides latency tolerance or latency hiding.
Watch out for hardware limits (per SM).

I Maximum number of resident blocks (8 in 2.x, 32 in 6.x).
I Maximum number of resident warps (48 in 2.x, 64 thereafter).
I Maximum number of resident threads (1536 in 2.x, 2048 thereafter).
I Exceeding these limits will not crash the system, but will result in

slower execution.
Watch out for thread divergence.

I If different threads in the same warp are following different code
paths, all possible paths will be executed sequentially and those
threads not on the current path will be idle.

I Execution is still correct, but much slower.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 13 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


A Warped Example: Reduce (part 1)

Consider a reduce of an array data containing n elements using
n/2 threads (assume n is power of 2).
Simple code:

for(int stride = 1; stride < n; stride += stride) {
if((my idx & (stride-1)) == 0)

data[2*my idx] += data[2*my idx + stride];
syncthreads();

}
The syncthreads() call ensures that every thread has
completed an iteration of the loop before any thread starts the
next iteration.

I More discussion on slide 18.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 14 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


A Warped Example: Reduce (part 2)

Consider n == 16
I First iteration, for i in 0, . . . , 7:

data[2*i] += data[2*i]+1
Now, all the even indexed elements have their sum with their odd
counterpart.

I Second iteration, for i in 0, 2, 4, 6:
data[2*i] += data[2*i]+2.

All elements with indices that are multiples of four, have their sum
with the next three elements.

I Third iteration leads with data[0] and data[8] holding sums for
their halves of the array.

I The fourth iteration puts the complete sum into data[0].

There are at most 8 threads working, so everything fits within a
single warp.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 15 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


A Warped Example: Reduce (part 3)

What if n==1024?
I We have 512 threads: 16 warps of 32 threads.
I In the first iteration all threads are active.
I In the next iteration each warp has 16 active threads, so the GPU

has to execute the code for all 16 warps even though half the
threads do nothing.

I In subsequent iterations, the warps are more and more poorly
utilized.

This solution is correct, but much of the parallel hardware will sit
idle much of the time.
We would like to pack the busy threads into the minimum number
of warps.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 16 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


Warp Speed!

for(int stride = n/2; stride > 0; stride >>= 1) {
if(my idx < stride)

data[my idx] += data[my idx] + stride;
syncthreads();

}

Consider n == 1024 again.
I In the first iteration, there are 16 active warps – all threads in each

warp are busy.
I In the second iteration, there are 8 active warps – all threads in

each active warp are busy.
I Similarly, for the 3rd through 5th iterations

The number of active warps decreases after each iteration, but all
threads in each active warp are busy.

I The inactive warps have no pending instructions, so they will not be
scheduled and will not occupy processing resources.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 17 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


Synchronization

The reduce example used syncthreads(): all the threads in
the block must execute this statement before any can continue
beyond it.

I Be very careful about thread divergence: All threads in the block
must meet at the same barrier.

I That means the same line of code.
I In loops, that means the same iteration.
I Executing different syncthreads() commands will cause the

kernel to hang.
Also, syncthreads() only synchronizes between threads
within a single block.

I Note that threads within a warp already stay synchronized because
they are executed together.

I The only way to synchronize between threads in different blocks is
to finish the kernel and launch another.

We’ll cover synchronization in more detail later.

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 18 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


Preview

March 10: CUDA Threads, Part 2
March 13: CUDA Memory

Reading Kirk & Hwu Ch. 4
March 15: CUDA Memory: examples
March 17: CUDA Performance

Reading Kirk & Hwu Ch. 5
March 20: Matrix multiplication with CUDA, Part 1
March 22: Matrix multiplication with CUDA, Part 2
March 24 – April 3: Other Topics
• more parallel algorithms, e.g. dynamic programming?
• reasoning about concurrency, e.g. termination detection
• other paradigms, e.g. Scala and futures?

April 5: Party: 50th Anniversary of Amdahl’s Law

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 19 / 20

https://www.amazon.com/Programming-Massively-Parallel-Processors-Hands/dp/0128119861/ref=sr_1_1?s=books&ie=UTF8&qid=1485394260&sr=1-1&keywords=programming+massively+parallel+processors
https://www.amazon.com/Programming-Massively-Parallel-Processors-Hands/dp/0128119861/ref=sr_1_1?s=books&ie=UTF8&qid=1485394260&sr=1-1&keywords=programming+massively+parallel+processors
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418


Review

In CUDA, what is a grid, a block, and thread?
Why does CUDA allow millions of thread blocks but only 1024
threads per block?
How does a programmer specify the number of blocks and
number of threads when launching a CUDA kernel?
How does a thread determine its position within the grid?
Why do threads need to check their indices against array bounds?
What is a warp? Why does it matter?

Greenstreet & Mitchell CUDA Threads CPSC 418 – Mar. 8 & 10, 2017 20 / 20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

