CUDA Threads

Mark Greenstreet & lan M. Mitchell

CPSC 418 — March 8 & March 10, 2017

@ Kernel organization: grids, blocks & threads.
@ Hardware organization: SMs, SPs & warps.

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet & lan M. Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license

http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 1/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_08
https://en.wikipedia.org/wiki/March_10
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Compute Capability

@ Lots of nVidia jargon here.
@ Lots of very specific constraints on hardware capabilities.

@ Values of those constraints depend on the compute capability:
essentially a version number for the GPU hardware.
» CS departmentlab ({1in01, 1in02, ...,
1in25}.ugrad.cs.ubc.ca) has GeForce GTX 550 Ti which
feature compute capability 2.1.
» Examples of recent GPUs:
* Compute capability 3.5: GT 730 & GTX 780.
* Compute capability 5.0: GTX 750, 8xxM & 960M.
* Compute capability 5.2: GTX 9xx, 965M.
* Compute capability 6.1: GTX 10xx.

» More details at the CUDA wikipedia page.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 2/20

https://en.wikipedia.org/wiki/CUDA
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Thread organization: Grids, Blocks and Threads

@ When a kernel is launched, it creates a collection of threads.
@ This collection is called a grid.

» A grid is organized as an array of blocks
» Each block is an array of threads
» Array sizes are fixed once a kernel is launched.

@ Why so many details?

» Switching between blocks is done (I infer) by software in the GPU.

» Switching between threads in a block is done by hardware.

» By distinguishing blocks from threads, the CUDA model exposes
the performance issues to the programmer.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 3/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

A grid is an array of blocks

0,0) | (1,0) | (2,0) | 3,0) | (4,0) | (5,0)

O, | (L) 2D | GEBD|&D|6.D

0,2) | (1,2) | (2,2) | 3,2) | 4,2) [(5,2)

0,3) | (1,3) 1 (2,3)| (3,3) | (4,3) | (5.,3)
A grid

@ Blocks are scheduled by the GPU software.

@ Blocks can be arranged as 1D, 2D or 3D array.
» Dimensions are called “x”, “y” and “z”.

@ There can be lots of blocks:

» Each dimension can be up to 2 — 1 = 65535.
» CC 3.0+ allows x dimension up to 23" — 1 blocks.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 4/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Each block is an array of threads

Blocks Threads
0910|0630 @ S \ (0,0,0) | (1,0,0) | (2,0,0)
O.D | 1LD 2D [G.D| @D]| GD ©0.1.0)[(1.1.0)[2.1.0)
02| (1.2)| 22| 3.2 | 42| (5.2) ©0200.20| 220

(0,3,0) [(1,3,0) | (2,3,0)
03) | (1,3) | (2.3)[33) | 4.3)| (5.3) 040 140 G20

Where do they put all those threads?

@ Threads are scheduled by the GPU hardware.

@ Threads can be arranged as a 1D, 2D, or 3D array
» Grid and block dimensions and sizes may be different.

@ There can be a moderate number of threads in each dimension:
» x Or y up to 1024 threads.
» z up to 64 threads.

@ However, total number of threads per block (product of all

dimensions) is also capped at 1024.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 5/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Threads and blocks: launching a kernel

@ Let’s say we have:
__global__ void kernel_fun (args)

@ To launch this kernel, we execute a statement like:
kernel_fun<<<dimGrid, dimBlock>>> (actuals) ;
where
» dimGrid specifies the dimension(s) of the grid (an array of blocks):
* dimGrid can be an int, in which case the array is 1D.
* dimGrid can be a dim3, for example:
dim3(6,4,1)
» dimBlock specifies the dimension(s) of each block (an array of
threads):

* dimBlock can be an int or a dim3.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 6/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Threads and Blocks within a Kernel's Grid

@ Within a running kernel, CUDA-C provides four built-in variables to
determine the position of a thread within the grid: blockDim,
blockIdx, threadDim, and threadIdx.

@ There is a naming pattern:

>

v vy VvYyy

Each of these structures has three fields: x, y and z corresponding
to the three possible dimensions.

blockDim. ? gives the size of the grid in each dimension x, y or z.
threadDim. ? gives the size of each block in each dimension.
blockIdx.? gives the indices of the thread’s block within the grid.
threadIdx.? gives the indices of the thread within its block.

@ For dimensions which are absent:

>

>

blockDimor threadDim will be 1.
blockIdx or threadIdx will be 0.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 7120

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Threads and Blocks: Where are We?

@ Note the constraints:

0 <blockIdx.x <blockDim.x
0 <blockIdx.y <blockDim.y
0 <blockIdx.z < blockDim.z
0 < threadIdx.x < threadDim.x
0 < threadIdx.y < threadDim.y
0 < threadIdx.z < threadDim.z

@ Because the size of blocks are limited, it is common to use code
such as:

uint my_idx = blockDim.x*blockIdx.x + threadIdx.x;
to combine the block and thread indices into a single index.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 8/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Bounds checking: launching kernels

@ Consider executing kernel_fun on an array of n elements.
@ Because n might be large, we’'ll use n/256 blocks of 256 threads.
» THINK: what if n is not a multiple of 2567
» We’'ll round up to make sure we have enough threads.
@ The kernel launch looks like:
kernel_fun<<<ceil (n/256.0), 256>>>(n, myArray);

» Why divide by 256. 0 instead of 2567
» Why use ceil?

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 9/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Bounds checking: in the kernel

@ The kernel launch looks like:
kernel_fun<<<ceil (n/256.0), 256>>>(n, myArray);
@ THINK: what if n is not a multiple of 2567

» We’'ll launch more than n threads?

» For example, if n==1000, then we’ll launch 4 blocks of 256 threads.
A total of 1024 threads.

» What will the last 24 threads do?

@ Add a test:

uint my-idx = blockDim.xxblockIdx.x + threadIdx.x;
if (my-idx < n) {

}

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 10/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

SMs, SPs and Warps (oh my!)

@ Each streaming multiprocessor (SM) has multiple streaming
processors (SPs) and can be responsible for multiple groups of 32
threads called warps.

» From the New Oxford American Dictionary: (the) “warp” is “the
threads on a loom over and under which other threads (the weft)
are passed to make cloth”

@ Details, details. . .

» These concepts are not part of the CUDA platform and API: Code
is written in terms of a grid of blocks of threads.

» You can write correct code without thinking about these details.

» If you want to write fast code, you must take them into account.

» The block vs grid structure exposes these details if you want to take
advantage of them.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 11/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

SMs, SPs and Warps: What are They?

@ Each streaming multiprocessor (SM) in the GPU executes threads
in SIMD fashion.

» All threads in a block are assigned to the same SM.
» Each SM has a single (or small number of?) instruction fetch unit(s)
and a larger number of execution units.

@ Each SM has multiple streaming processors (SPs) that actually
execute an instruction.

» The SPs are specialized: ALUs, load / store, special function units.
» A single SP can perform a single operation on a small set of
threads.

@ A warp is a collection of 32 threads that execute together on the
same SP.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 12/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

SMs, SPs and Warps: Why do We Care?

@ Fill your warps: Ensure the number of threads in a block is a
multiple of the warp size to avoid idle hardware.
@ Have lots of warps: If one warp is waiting on a long latency
operation, the SM can find another warp to execute.
» Provides latency tolerance or latency hiding.
@ Watch out for hardware limits (per SM).

» Maximum number of resident blocks (8 in 2.x, 32 in 6.x).

» Maximum number of resident warps (48 in 2.x, 64 thereafter).

» Maximum number of resident threads (1536 in 2.x, 2048 thereafter).

» Exceeding these limits will not crash the system, but will result in
slower execution.

@ Watch out for thread divergence.

» [f different threads in the same warp are following different code
paths, all possible paths will be executed sequentially and those
threads not on the current path will be idle.

» Execution is still correct, but much slower.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 13/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

A Warped Example: Reduce (part 1)

@ Consider a reduce of an array data containing n elements using
n/2 threads (assume n is power of 2).
@ Simple code:
for (int stride = 1; stride < n; stride += stride) {
if ((my_-idx & (stride-1)) == 0)
data[2+my_-idx] += data[2+my-idx + stride];
__syncthreads () ;

}

@ The __syncthreads () call ensures that every thread has
completed an iteration of the loop before any thread starts the
next iteration.

» More discussion on slide 18.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 14/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

A Warped Example: Reduce (part 2)

@ Considern == 16
» First iteration, for i in 0, ..., 7:
data[2*1i] += data[2+1]+1
Now, all the even indexed elements have their sum with their odd
counterpart.
» Second iteration, for i in 0, 2, 4, 6:
data[2+1] += data[2+1]+2.
All elements with indices that are multiples of four, have their sum
with the next three elements.
» Third iteration leads with data[0] and data[8] holding sums for
their halves of the array.
» The fourth iteration puts the complete sum into data[0].

@ There are at most 8 threads working, so everything fits within a
single warp.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017

15/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

A Warped Example: Reduce (part 3)

@ What if n==10247

» We have 512 threads: 16 warps of 32 threads.

» In the first iteration all threads are active.

» In the next iteration each warp has 16 active threads, so the GPU
has to execute the code for all 16 warps even though half the
threads do nothing.

» In subsequent iterations, the warps are more and more poorly
utilized.

@ This solution is correct, but much of the parallel hardware will sit
idle much of the time.

@ We would like to pack the busy threads into the minimum number
of warps.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 16/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Warp Speed!

for (int stride = n/2; stride > 0; stride >>= 1) {
if (my_idx < stride)
data[my-idx] += data[my-idx] + stride;
__syncthreads () ;

@ Consider n == 1024 again.
» In the first iteration, there are 16 active warps — all threads in each
warp are busy.
» In the second iteration, there are 8 active warps — all threads in
each active warp are busy.
» Similarly, for the 3" through 5™ iterations
@ The number of active warps decreases after each iteration, but all
threads in each active warp are busy.
» The inactive warps have no pending instructions, so they will not be
scheduled and will not occupy processing resources.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 17/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Synchronization

@ The reduce example used __syncthreads () : all the threads in
the block must execute this statement before any can continue
beyond it.

» Be very careful about thread divergence: All threads in the block
must meet at the same barrier.

» That means the same line of code.

» In loops, that means the same iteration.

» Executing different __syncthreads () commands will cause the
kernel to hang.

@ Also, __syncthreads () only synchronizes between threads
within a single block.
» Note that threads within a warp already stay synchronized because
they are executed together.
» The only way to synchronize between threads in different blocks is
to finish the kernel and launch another.

@ We’'ll cover synchronization in more detail later.

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 18/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Preview

March 10: CUDA Threads, Part 2

March 13: CUDA Memory
Reading Kirk & Hwu Ch. 4

March 15: CUDA Memory: examples

March 17: CUDA Performance
Reading Kirk & Hwu Ch. 5

March 20: Matrix multiplication with CUDA, Part 1

March 22: Matrix multiplication with CUDA, Part 2

March 24 — April 3: Other Topics
e more parallel algorithms, e.g. dynamic programming?
e reasoning about concurrency, e.g. termination detection
e other paradigms, e.g. Scala and futures?

April 5: Party: 50™ Anniversary of Amdahl's Law

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 19/20

https://www.amazon.com/Programming-Massively-Parallel-Processors-Hands/dp/0128119861/ref=sr_1_1?s=books&ie=UTF8&qid=1485394260&sr=1-1&keywords=programming+massively+parallel+processors
https://www.amazon.com/Programming-Massively-Parallel-Processors-Hands/dp/0128119861/ref=sr_1_1?s=books&ie=UTF8&qid=1485394260&sr=1-1&keywords=programming+massively+parallel+processors
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Review

@ In CUDA, what is a grid, a block, and thread?

@ Why does CUDA allow millions of thread blocks but only 1024
threads per block?

@ How does a programmer specify the number of blocks and
number of threads when launching a CUDA kernel?

@ How does a thread determine its position within the grid?
@ Why do threads need to check their indices against array bounds?
@ What is a warp? Why does it matter?

Greenstreet & Mitchell CUDA Threads CPSC 418 —Mar. 8 & 10, 2017 20/20

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

