
Introduction to CUDA

Mark Greenstreet

CpSc 418 – Mar. 6, 2017

GPU Summary: slide 2
CUDA

I Data parallelism: slide 6
I Program structure: slide 8
I Memory: slide 10
I A simple example: slide 12
I Launching kernels: slide 19

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 1 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

GPU Summary: architecture

Lots of cores:
I Up to 90 or more SIMD processors.
I Each SIMD processors has 32 pipelines.
I This is the nVidia architecture – other GPUs are similar.

Deep, simple, execution pipelines
I Optimized for floating point.
I No bypassing: use multi-threading for performance.
I Branches handled by predicated execution

“When you come to a fork in the road, take it.”
(Often attributed to Yogi Berra.)

Limited on-chip memory.
I 1 or 2 MBytes total. Big CPUs have 32-64MB of L3 cache.
I The programmer manages data placement.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 2 / 24

https://en.wikipedia.org/wiki/Yogi_Berra
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

GPU Summary: Performance

Today’s processors are constrained by how much performance
can you get using ∼ 200 watts.

I Moving bits around takes lots of energy.
I Performing operations as quickly as possible takes lots of energy.
I E ∼ dt−α, where E is energy, d is distance, t is time per

operation, and 1 < α < 2 depending on design details.
F Corollary: P ∼ dα+1. Power grows someplace between quadratically

and cubically with clock frequency.

How GPUs optimize performance/power
I SIMD: instruction fetch and decode moves lots of bits. Amortize

over many cores.
I Simple pipelines: bypassing means moving bits quickly. GPUs omit

bypasses.
I High latency: avoid pipeline stages that must do a lot in a hurry.
I Expose the memory hierarchy: let the programmer control moving

data bits around.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 3 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

GPU Summary: Economics
GPUs are designed for the high-volume, consumer graphics
market.

I Amortize high design cost over a large number of units sold.
This means GPUs aren’t really optimized for scientific computing:

I More on-chip memory would certainly help scientific computing, but not
needed for graphics rendering.

I Comparison: An nVidia GPU has about 2 MBytes of on-chip memory, an
Intel Xeon can have 40MBytes or more.

I Cache memory is about 60-70 transistors per byte.
I A high-end nVidia GPU has 7 billion transistors, 1 or 2% for memory.
I What if the chip were 30-40% memory?

F better for general purpose computing
F little pay-off for graphics
F smaller distinction with Intel CPUs

Cheap is good
I It’s the economics of cheap-computing that drives Moore’s Law and all the

other exponential growth-rate trends that make computing a field of
intense, ongoing innovation.

I That keeps the field in transition – deal with it.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 4 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

Programming GPUs: CUDA

Data Parallelism
CUDA program structure
Memory
Launching kernels

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 5 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

Data Parallelism

When you see a for-loop:
I Is the loop-index used as an array index?
I Are the iterations independent?
I If so, you probably have data-parallel code.

Data-Parallel problems:
I Run well on GPUs because each element (or segment) of the array

can be handled by a different thread.
I Data parallel problems are good candidate for most parallel

techniques because the available parallelism grows with the
problem size.

I Compare with “task parallelism” where the problem is divided into
the same number of tasks regardless of its size.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 6 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

Which of the following loops are data parallel?
for(int i = 0; i < N; i++)

c[i] = a[i] + b[i].

dotprod = 0.0;
for(int i = 0; i < N; i++)

dotprod += a[i]*b[i];

for(int i = 1; i < N; i++)
a[i] = 0.5*(a[i-1] + a[i]);

for(int i = 1; i < N; i++)
a[i] = sqrt(a[i-1] + a[i]);

for(int i = 0; i < M; i++) {
for(int j = 0; j < N; j++) {

sum = 0.0;
for(int k = 0; k < L; k++)

sum += a[i,k]*b[k,j];
c[i,j] = sum;

} }

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 7 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

CUDA Program Structure

A CUDA program consists of three kinds of functions:
I Host functions:

F callable from code running on the host, but not the GPU.
F run on the host CPU;
F In CUDA C, these look like normal functions – they can be preceded

by the host qualifier.
I Device functions.

F callable from code running on the GPU, but not the host.
F run on the GPU;
F In CUDA C, these are declared with a device qualifier.

I Global functions
F called by code running on the host CPU,
F they execute on the GPU.
F In CUDA C, these are declared with a global qualifier.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 8 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

Structure of a simple CUDA program

A global function to called by the host program to execute on
the GPU.

I There may be one or more device functions as well.
One or more host functions, including main to run on the host
CPU.

I Allocate device memory.
I Copy data from host memory to device memory.
I “Launch” the device kernel by calling the global function.
I Copy the result from device memory to host memory.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 9 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

Execution Model: Memory

GPUCPU

caches DDR

memory
host

GDDR GPU, off−chip

"global" memory

Host memory: DRAM and the CPU’s caches
I Accessible to host CPU but not to GPU.

Device memory: GDDR DRAM on the graphics card.
I Accessible by GPU.
I The host can initiate transfers between host memory and device

memroy.
The CUDA library includes functions to:

I Allocate and free device memory.
I Copy blocks between host and device memory.
I BUT host code can’t read or write the device memory directly.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 10 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

More Memory

GPUs support fairly large off-chip memory bandwidth:
200-400GB/s.

I But this isn’t fast enough to keep 1000 processors busy at 1Gflop/s
each!

The GPU has on-chip memory to help:
I Shared memory: 16KBytes or 48KBytes.
I Registers: 128Kbytes (256KBytes on more recent GPUs).
I Note that we need to use each value from memory for 20 or more

instructions or else the memory bandwidth will limit performance.
GPUs also have L2 caches, around 1.5MByte in the most recent
chips.

I But I haven’t found a good way to understand them from the
textbook, or from other CUDA manuals.

I The coherence/consistency guarantees seem to be pretty weak.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 11 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

Example: saxpy

saxpy = “Scalar a times x plus y”.
The device code.
The host code.
The running saxpy

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 12 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

saxpy: device code

global void saxpy(uint n, float a, float *x, float *y) {
uint i = blockIdx.x*blockDim.x + threadIdx.x; // nvcc built-ins
if(i < n)

y[i] = a*x[i] + y[i];
}

Each thread has x and y indices.
I We’ll just use x for this simple example.

Note that we are creating one thread per vector element:
I Exploits GPU hardware support for multithreading.
I We need to keep in mind that there are a large, but limited number

of threads available.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 13 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

saxpy: host code (part 1 of 5)

int main(int argc, char **argv) {
uint n = atoi(argv[1]);
float *x, *y, *yy;
float *dev x, *dev y;
int size = n*sizeof(float);
x = (float *)malloc(size);
y = (float *)malloc(size);
yy = (float *)malloc(size);
for(int i = 0; i < n; i++) {

x[i] = i;
y[i] = i*i;

}
...

}

Declare variables for the arrays on the host and device.
Allocate and initialize values in the host array.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 14 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

saxpy: host code (part 2 of 5)

int main(void) {
...
cudaMalloc((void**)(&dev x), size);
cudaMalloc((void**)(&dev y), size);
cudaMemcpy(dev x, x, size, cudaMemcpyHostToDevice);
cudaMemcpy(dev y, y, size, cudaMemcpyHostToDevice);
...

}

Allocate arrays on the device.
Copy data from host to device.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 15 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

saxpy: host code (part 3 of 5)

int main(void) {
...
float a = 3.0;
saxpy<<<ceil(n/256.0),256>>>(n, a, dev x, dev y);
cudaMemcpy(yy, dev y, size, cudaMemcpyDeviceToHost);
...

}

Invoke the code on the GPU:
I add<<<ceil(n/256.0),256>>>(...) says to create dn/256e

blocks of threads.
I Each block consists of 256 threads.
I See slide 20 for an explanation of threads and blocks.
I The pointers to the arrays (in device memory) and the values of n

and a are passed to the threads.

Copy the result back to the host.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 16 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

saxpy: host code (part 4 of 5)

...
for(int i = 0; i < n; i++) { // check the result

if(yy[i] != a*x[i] + y[i]) {
fprintf(stderr,

"ERROR: i=%d, a[i]=%f, b[i]=%f, c[i]=%f\n",
i, a[i], b[i], c[i]);

exit(-1);
}

}
printf("The results match!\n");
...

}

Check the results.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 17 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

saxpy: host code (part 5 of 5)

int main(void) {
...
free(x);
free(y);
free(yy);
cudaFree(dev x);
cudaFree(dev y);
exit(0);

}

Clean up.
We’re done.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 18 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

Launching Kernels

Terminology
I Data parallel code that runs on the GPU is called a kernel.
I Invoking a GPU kernel is called launching the kernel.

How to launch a kernel
I The host CPUS invokes a global function.
I The invocation needs to specify how many threads to create.
I Example:

F add<<<ceil(n/256.0),256>>>(...)
F creates

⌈
n

256

⌉
blocks

F with 256 threads each.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 19 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

Threads and Blocks
The GPU hardware combines threads into warps

I Warps are an aspect of the hardware.
I All of the threads of warp execute together – this is the SIMD part.
I The functionality of a program doesn’t depend on the warp details.
I But understanding warps is critical for getting good performance.

Each warp has a “next instruction” pending execution.
I If the dependencies for the next instruction are resolved, it can

execute for all threads of the warp.
I The hardware in each streaming multiprocessor dispatches an

instruction each clock cycle if a ready instruction is available.
I The GPU in lin25 supports 32 such warps of 32 threads each in a

“thread block.”
What if our application needs more threads?

I Threads are grouped into “thread blocks”.
I Each thread block has up to 1024 threads (the HW limit).
I The GPU can swap thread-blocks in and out of main memory

F This is GPU system software that we don’t see as user-level
programmers.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 20 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

Compiling and running

lin25$ nvcc saxpy.cu -o saxpy
lin25$./saxpy 1000
The results match!

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 21 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

But is it fast?

For the saxpy example as written here, not really.
I Execution time dominated by the memory copies.

But, it shows the main pieces of a CUDA program.
To get good performance:

I We need to perform many operations for each value copied
between memories.

I We need to perform many operations in the GPU for each access to
global memory.

I We need enough threads to keep the GPU cores busy.
I We need to watch out for thread divergence:

F If different threads execute different paths on an if-then-else,
F Then the else-threads stall while the then-threads execute, and

vice-versa.
I And many other constraints.

GPUs are great if your problem matches the architecture.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 22 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

Preview

March 8: CUDA Threads, Part 1
Reading Kirk & Hwu 3rd ed., Ch. 3 (Ch. 4 in 2nd ed.)

March 10: CUDA Threads, Part 2
March 13: CUDA Memory

Reading Kirk & Hwu 3rd ed., Ch. 4 (Ch. 5 in 2nd ed.)
March 15: CUDA Memory: examples
March 17: CUDA Performance

Reading Kirk & Hwu 3rd ed., Ch. 5 (Ch. 6 in 2nd ed.)
March 20: Matrix multiplication with CUDA, Part 1
March 22: Matrix multiplication with CUDA, Part 2
March 24 – April 3: Other Topics
• more parallel algorithms, e.g. dynamic programming?
• reasoning about concurrency, e.g. termination detection
• other paradigms, e.g. Scala and futures?

April 5: Party: 50th Anniversary of Amdahl’s Law

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 23 / 24

https://www.amazon.com/Programming-Massively-Parallel-Processors-Hands/dp/0128119861/ref=sr_1_1?s=books&ie=UTF8&qid=1485394260&sr=1-1&keywords=programming+massively+parallel+processors
https://www.amazon.com/Programming-Massively-Parallel-Processors-Hands/dp/0128119861/ref=sr_1_1?s=books&ie=UTF8&qid=1485394260&sr=1-1&keywords=programming+massively+parallel+processors
https://www.amazon.com/Programming-Massively-Parallel-Processors-Hands/dp/0128119861/ref=sr_1_1?s=books&ie=UTF8&qid=1485394260&sr=1-1&keywords=programming+massively+parallel+processors
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

Review

What is SIMD parallelism?
What is the difference between “shared memory” and “global
memory” in CUDA programming.
Think of a modification to the saxpy program and try it.

I You’ll probably find you’re missing programming features for many
things you’d like to try.

I What do you need?
I Stay tuned for upcoming lectures.

Mark Greenstreet Introduction to CUDA CS 418 – Mar. 6, 2017 24 / 24

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_06
https://en.wikipedia.org/wiki/2017

