
Map-Reduce

Mark Greenstreet & Ian M. Mitchell

CPSC 418 – February 27, 2017

Problem Domain: Large-Scale Data Analysis
The Map-Reduce Pattern
Implementation Issues
Results

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet & Ian Mitchell
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 1 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Portrait of a Data Centre

Sketch of a big data center:
I Tens of thousands of machines, each with its own disk(s).
I Distributed file system—what is that?
I Commodity networks and routers.

F Each machine has a network interface (e.g. 10Gb ethernet)
F Cross-section bandwidth is way smaller than the number of machines

times the per-machine bandwidth.
I Scale is so big that there will be failures: chips, cores, memory,

disks, network interfaces, switches, . . .
F If the average lifetime of a machine is five years, then 10,000

machine data center will have a failure every four hours.
F Even without failure, maintenance will take machines offline.

Need to analyse the huge data sets stored on these machines.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 2 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Problem Domain: Large-Scale Data Analysis

Data analysis requires:
I Fetching the relevant records.
I Performing analysis of related records.
I Summarizing the results.

Example: word frequency in documents
Example: core curriculum

I How do 200-level courses impact success in 400-level courses?
I Look at all transcripts.
I Analyze relationships for (2XX, 4YY) pairs.

Google noted that each such problem was getting its own custom
code.

I All of that code development is expensive.
I Often required similar rewrites when underlying system changed.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 3 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

The MapReduce Pattern

Slight generalization of description from [Dean & Ghemawat 2008].

All data is represented as collections of (Key, Value) pairs.
map

I For each (Key1, Value1) pair of the input, user code produces a
collection of (Key2, Value2) pairs for the output.

shuffle
I All (Key2, Value2) pairs with the same Key2 are combined into a

(Key2, [list of Value2]) result and sorted by Key2.
reduce

I For each (Key2, [list of Value2]), user code produces a (Key2,
Value3) result (where Value3 might be a list itself).

Apache Hadoop is an open-source implementation of this basic
framework.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 4 / 21

http://hadoop.apache.org/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

MapReduce: Word-Count

Example from [Dean & Ghemawat 2008] revised.
Input data:

I Key1 is the document name.
I Value1 is document text.

map:
I Key2 is a word.
I Value2 is the count of times it appears in the document.

shuffle:
I Collect counts from all documents for each word (Word, [list of

Counts]).
reduce:

I Value3 is the sum of all counts; in other words, the total number of
times the word appears in all documents.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 5 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

MapReduce: Curriculum

Input data (Key1, Value1):
I Key1 is the student number for the transcript
I Value1 is a list of (CourseNumber, Grade) pairs.

map: For each 200-level course and for each 400-level course in
the transcript:

I Key2 is the pair (Course200, Course400).
I Value2 is the pair (Grade200, Grade400).

shuffle:
I Collect matching course pairs from all students ((Course200,

Course400), [(Grade200, Grade400), (Grade200, Grade400), . . .]).
reduce:

I Value3 is (for example) the sample Pearson correlation coefficient r
for the data set [(Grade200, Grade400), (Grade200, Grade400),
. . .].

I More complex analyses could be performed.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 6 / 21

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Wait a Minute Now. . .

But didn’t we already study “reduce”?

The course library’s wtree:reduce() in Erlang had leaf(),
combine() and root().
MapReduce at Google has (Key1, Value1), (Key2, Value2), and
shuffle?

These patterns have similar names but seek to solve different
problems.

Reduce is a generic name for a functional programming pattern
which takes a collection of data and produces some kind of
summary information.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 7 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Many flavours of Reduce

In Erlang, wtree:reduce() is designed to spread the
computation of a reduction across many workers.

I Implementation maximizes parallelism for a single reduce
operation.

I Collection and combination of data occurs in combine() functions.
I Note that the leaf() function can perform a map operation before

the reduction, so no loss of generality.
In MapReduce, many independent reductions (one for each Key2)
are spread across many workers, but each reduction is performed
by a single worker.

I Implementation emphasizes fault tolerance and disk-based data
storage.

I Collection (but not combination) of data occurs in shuffle step.
I If reduction is too big for a single worker, user must change the

intermediate (Key2, Value2) representation and/or break the
problem into multiple MapReduce steps.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 8 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Programming Model

The user creates a MapReduce specification object which provides:
The map and reduce functions.
The names of the input and output files.
Optionally other tuning parameters; for example:

I Number of map and reduce workers to use.
I Custom function to combine intermediate results within a map

worker to reduce size of intermediate data.
I A custom hashing function to help with shuffle step.

The user then invokes the MapReduce function.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 9 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Execution (Part 1)

The MapReduce function spawns M map worker, R reduce
workers, and one master.
Each map worker:

I Is assigned fragment(s) of the input file by the master – these
fragments are called splits.

I Reads a (Key1, Value1) record from an assigned split.
I Runs user map code on that record.
I Writes the (Key2, Value2) result to a temporary file.
I Repeats until all records in the split are completed.
I Repeats until all assigned splits are completed.
I Notifies the master when it is done.

Result is a bunch of temporary files holding (Key2, Value2) pairs.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 10 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Execution (Part 2)

Start from temporary files holding (Key2, Value2) pairs.
Shuffle:

I Each reduce worker is assigned Key2 value(s).
I Corresponding Value2 lists are taken from map worker’s temporary

output files and written to reduce worker’s temporary input files.
I Reduce worker receives (Key2, [list of Value2]) pairs sorted by

Key2.
Each reduce worker:

I Reads a (Key2, [list of Value2]) record from a temporary file.
I Runs user reduce code on that record.
I Writes the (Key2, Value3) result to a file.
I Notifies the master when it is done.

When all the reduce computations are complete, the master
sends a message to wake up the user process, and the
MapReduce function returns.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 11 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Do the MapReduce Shuffle

How do the intermediate results get from the map workers to the
reduce workers? Simple version described in [Dean & Ghemawat,
2008]:

Map workers know the number of reduce workers R.
Each (Key2, Value2) is written to a different file according to
hash(Key2) mod R.
The master tells the reduce worker which file to read from each
map worker.

Later versions of MapReduce utilized more complex or even
user-specified hashing; for example to:

Better balance size of reduce problems.
Reduce network traffic and/or simplify sorting during shuffle step.
Cluster certain Key2 tuples onto the same reduce workers.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 12 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Fault Tolerance

Bad things happen: Failed disks, partitioned networks, power
shortages, . . .

Key Idea:
I The map and reduce operations are based on functional

programming ideas: referential transparency and no side-effects.
I If a worker crashes, it is as if it never existed.
I The master can restart the task on another machine.

The master periodically pings the tasks, and restarts dead ones.
I Map tasks produce only temporary files, so if a completed map task

fails before informing the master then it must be re-executed.
I Reduce tasks produce files in the distributed file system (redundant

and fault-tolerant), so no need to re-execute.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 13 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Semantics

If the map and reduce functions are deterministic, then the result
of MapReduce is the same as a sequential execution.

I This is really cool!
I There is a sequential implementation of MapReduce:

F Read all of the (Key1, Value1) pairs from the input file.
F Write all of the (Key2, [list of Value2]) tuples to an intermediate file.
F Sort the intermediate file by the Key2 values.
F Perform the reduce operation for each Key2 value and write the

results to the output file.

If the map and reduce functions are not deterministic, then
I It’s a bit more complicated, but it’s still reasonable.
I If the reduce tasks are non-deterministic, then the result for each

Key2 is the result from some sequential implementation.
I The paper doesn’t talk about non-determinism for map, but it is

probably similar.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 14 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Work Stealing

Sometimes a worker is slow – stragglers.
If the MapReduce task is near completion, the master assigns
straggler tasks to idle processors.
These are called backup tasks.
Either the original or the backup process can complete the task.
In practice, this work stealing by backup tasks:

I Only adds a few percent to the total compute resources used.
I Can result in substantial performance improvements: The paper

reported a 44% slow-down when the sort benchmark was run
without backup tasks.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 15 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Performance Issues

The master attempts to schedule map tasks on the processor
whose local disk holds the split being processed, or are nearby
(by the network connections).
Shuffle moves data from many map tasks to many reduce tasks.

I Easily saturates the cross-section bandwidth of the network.
For good performance, the map tasks should be filters that output
much less data than they read.

I Often not true of the “natural” intermediate representation (such as
curriculum problem above).

I Fewer distinct Key2 values means less parallelism in reduce tasks.
Can often reduce intermediate data size by partial reduction in the
map workers.

I May change the semantics of MapReduce (but not if reduce is
associative and commutative).

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 16 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

MapReduce is Designed for BIG Data

Communication between standard linux machines with generic
networks takes milliseconds.
Reading large disk files takes seconds.
The task needs to be big enough to justify these overheads:

I Equivalent to increasing λ by a few orders of magnitude.
I MapReduce makes sense if the task is disk-limited and harnassing

a few thousand disks provides the necessary disk bandwidth.
F Think of it as “disk parallelism” instead of “CPU parallelism”.
F Note: big-data companies like Amazon, Facebook and Google are

moving to using FLASH memory and DRAM instead of disks, exactly
because of these I/O bottlenecks.

I Or if you have a really huge data set the compute time may
dominate all of these overheads.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 17 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Results (Part 1)
Achieves impressive performance on massive data sets 2008–2013(?)

Report in [Dean & Ghemawat, 2008]: Good performance on
∼ 2000 machines: grep and sort work through 1010 100-byte
records (1TB) in minutes.
Google estimates ∼ 20PB / day in total MapReduce processing in
January 2008.
Google research blog reports sorting 1013 100-byte records (1PB)
on ∼ 4000 machines (and ∼ 48,000 disks) in six hours in
November 2008, then 33 minutes for 1 PB or 6 hours for 10 PB on
8000 machines in September 2011.
Open source implementation in Hadoop widely available as a
cloud service.
Many example algorithms documented; for example, search for
“map reduce” on http://scholar.google.ca.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 18 / 21

http://scholar.google.ca
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Results (Part 2)

Big data processors are now moving away from MapReduce.

Framework emphasizes batch processing of data residing in
distributed file system, which limits flexibility and efficiency.
”We don’t really use MapReduce anymore” [Urs H olzle, senior
vice president of technical infrastructure at Google
speaking at Google I/O conference in 2014]
Machine learning project Apache Mahout is shifting away from
MapReduce algorithms to alternatives such as Apache Spark.

I Worth noting: Spark also uses a functional programming model
with referential transparency.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 19 / 21

http://www.datacenterknowledge.com/archives/2014/06/25/google-dumps-mapreduce-favor-new-hyper-scale-analytics-system/
http://mahout.apache.org/
https://spark.apache.org/
http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Summary
MapReduce is a parallel programming pattern

I Data are represented by collections of (Key, Value) pairs.
I User provides map to take input (Key1, Value1) pairs to

intermediate (Key2, Value2) pairs.
I Shuffle step collects intermediate data into (Key2, [list of Value2])

pairs and sorts it by Key2.
I User provides reduce to take sorted (Key2, [list of Value2]) pairs

into (Key2, Value3) pairs.
Details of the parallel implementation are handled by the
MapReduce API:

I Creating workers processes, delivering input and output files,
shuffling intermediate data between map and reduce workers.

I Handling failures and slow nodes.
Performance is often bandwidth limited.

I Locality matters: perform map on the machine with the data.
I If map is an effective filter (bytes out � bytes in), then we can

reduce the impact of network congestion.
I In practice, user must choose (Key2, Value2) representation wisely

to trade-off shuffle effort for reduce paralllelism.

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 20 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Review: Properties of MapReduce

How does MapReduce distribute work between map tasks?
How does MapReduce distribute work between reduce tasks?
How does MapReduce handle machine, network or other failures?
How does MapReduce handle slow (i.e. straggler) machines?
What are the requirements for the type-signatures of the map and
reduce functions in a map-reduce?

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 21 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

Review: Example of a MapReduce Problem

I want to fly from Vancouver to Timbuktu. There are no direct flights, so
I want to find the fastest route with one stop. How could I do this using
map reduce?

Input data is a table of airline flights of the form:
(DepartCity, DepartTime, ArriveCity, ArriveTime)

I Hint: use the intermediate city as Key2.
I For simplicity, assume that all times are GMT (no need for

time-zone conversion).
I How does map filter out irrelevant flights?

Greenstreet & Mitchell Map-Reduce CPSC 418 – Feb. 27, 2017 22 / 21

http://www.cs.ubc.ca/~mrg
http://www.cs.ubc.ca/~mitchell
http://www.ugrad.cs.ubc.ca/~cs418

