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Parallelizing Mergesort
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Bitonic Merge
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Shuffle
Given two sequences, X of length N where N is even, the shuffle
of X is Y = shuffle(X ) where

Y i = X i/2, if i is even
= X (i+N−1)/2, if i is odd

I shuffle([0,1,2,3,4,5,6,7])→ [0,4,1,5,2,6,3,7].
shuffle is like shuffling a deck of cards.

I Split the deck in half.
I Interleave the cards from the two halves.

If N is a power of 2, then shuffle rotates the least-significant bit of
the index to the most significant bit:

shuffle([000, 001, 010, 011, 100, 101, 110, 111]) ->
[000, 100, 001, 101, 010, 110, 011, 111])

If N is odd,
Z i = X i/2, if i is even

= X (i+N)/2, if i is odd

I shuffle([0,1,2,3,4])→ [0,3,1,4,2]
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Unshuffle

The inverse of shuffle.
Let N = length(Y ) and X = unshuffle(Y ), then

X i = Y 2i , if i < N/2
= X 2i−N+1, if N/2 ≤ i

It’s like dealing a deck of cards into two piles, and then stacking
one pile on top of the other.
If N is a power of 2, then unshuffle rotates the most significant bit
of the index to the least significant bit:
If N is odd,

X i = Y 2i , if i < (N + 1)/2
= X 2i−N , if (N + 1)/2 ≤ i
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Bit operations: rotr and rotl

rotr(I, W) % Rotate the lower W bits of I one place to the right:
rotr(I, 0) -> I;
rotr(I, W) when is integer(W), W > 0 ->

Mask = (1 bsl W) - 1, % ones in the W least-significant bits
Ilo = I band Mask, % the W least-significant bits of I
Ihi = I band (bnot Mask), % the rest of I
Ilsb = I band 1, % the least-significant-bit of I
% Ilor is Ilo rotated one place to the right
Ilor = (Ilsb bsl (W-1)) bor (Ilo bsr 1),
Ihi bor Ilor.

I rotr(6,3) -> 5;
I rotr(6,4) -> 12;

rotr(I, W) rotates the lower W bits of I 1 place to the left.
Note: rotr(I,1) -> I, and rotl(I,1) -> I.
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Shuffle, Unshuffle, and Bit-Operations

If K is a power of 2, x[0..(K-1)] is the input of a shuffle K
module, and y[0..(K-1)] is the output, then

I the shuffle K operation moves x[i] to y[rotl(i,
log2(k))].

I equivalently: y[j] = x[rotr(j, log2(k))].
If K is a power of 2, x[0..(K-1)] is the input of a unshuffle K
module, and y[0..(K-1)] is the output, then

I the unshuffle K operation moves x[i] to y[rotr(i,
log2(k))].

I equivalently: y[j] = x[rotl(j, log2(k))].
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The Initial Unshuffles

Bitonic merge for K elements starts with an unshuffle K,
followed by a unshuffle K

2 , followed by a unshuffle K
4 , . . . ,

followed by a unshuffle 1.
If we let x[0..(K-1)] be the input to this network (I’m assuming
we’ve already done the flip for inputs x[0..((K/2)-1)]), and
y[0..(K-1)] be the output then:

I y[j] = x[rotl(rotl(...rotl(rotl(j, 1), 2), ...,
log2(K)-1), log2(K))]

I and we note that:
rotl(rotl(...rotl(rotl(j, 1), 2), ...,

log2(K)-1), log2(K)) = bitrev(j, log2(K))
where bitrev(j, W) is the bit-reverse of the lower W bits of j.

More specifically, for the 16-way bitonic merge, K = 16 and
log2(K ) = 4.

I If we write array indices as four bits, b3,b2,b1,b0,
I Then y[b3, b2, b1, b0] = x[b0, b1, b2, b3].
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The first compare-and-swap

The first compare-and-swap operates on y[b3,b2,b1,0] and
y[b3,b2,b1,1], for all 8 choices of b3, b2, and b1.

This corresponds to a compare-and-swap of x[b0,b1,b2,0] with
x[b0,b1,b2,1].
I’ll call the result of the compare-and-swap z where

I z[b3,b2,b1,0] = min(y[b3,b2,b1,0], y[b3,b2,b1,1]);
I z[b3,b2,b1,1] = max(y[b3,b2,b1,0], y[b3,b2,b1,1]);

And I’ll write z̃ for z with “x indexing”:
I z̃[b3,b2,b1,b0] = z[b0,b1,b2,b3];
I z̃[0,b2,b1,b0] = min(x[0,b2,b1,b0], x[1,b2,b1,b0]);
I z̃[1,b2,b1,b0] = max(x[0,b2,b1,b0], x[1,b2,b1,b0])
I These are comparisons with a “stride” of 8 (for x).
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The first shuffle

The first shuffle takes z as an input and I’ll call the output w.
The first shuffle is a shuffle 4; so

I w[i] = z[rotl(i,2)].
I Equivalently, w[b3,b2,b1,b0] = z[b3,b2,b0,b1].

Let
w̃[b3, b2, b1, b0] = w[b0, b1, b3, b2]

= z[b0, b1, b2, b3]
= z̃[b3, b2, b1, b0]

The second stage of compare-and-swap modules operates on
I w[b3,b2,b1,0] and w[b3,b2,b1,1]
I Equivalently, w̃[b1,0,b2,b3] and w̃[b1,1,b2,b3].
I These are comparisons with a stride of 4 for z̃ and w̃.
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The rest of the merge

In the same way, the third stage of compare-and-swap modules
operates has a stride of 2 for x indices,
And the final stage has a stride of 1.
More generally, to merge two sequences of length 2L:

I Flip the lower sequence
I

I Or, just sort it in reverse in the first place.
I Perform compare-and-swap operations with stride L.
I Perform compare-and-swap operations with stride L/2 – note that

these operate on pairs of elements whose indices differ in the L/2
bit, and all of their other index bits are the same.

I Perform compare-and-swap operations with stride L/4, . . .
I Perform compare-and-swap operations with stride 1 – this

compares the element at 2*i with the element at 2*i+1 for 0 ≤ i
< 2L.

Done!
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The “Textbook” Diagram
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Flipping Out

What should we do about the flips?
Push them back (right-to-left) through the network

I Keep track of how many flips we’ve accumulated.
I Sort up for an even number of flips.
I Sort down for an odd number of flips.

Flip the wiring in the bottom half of each unshuffle.
In practice:

I Do the one that’s easier for your implementation.
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Bitonic Sort
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Bitonic Sort in practice

Sorting networks can be used to design practical sorting
algorithms.
To sort N values with P processors:

I Divide input into 2P segments of length N
2P .

I Each processor sorts its pair of segments into one long segment.
F The sorted segments are the inputs to the sorting network.

I Now, follow the actions of the sorting network:
F Processor I handles rows 2I and 2I + 1 of the sorting network.
F Each compare-and-swap is replaced with “merge two sorted

sequences and split into top half and bottom half.”
F When the sorting network has a compare-and-swap between rows 2I

and 2I + 1, each processor handles it locally.
F When the sorting network has a compare-and-swap between rows 2I

and 2I + K for K > 1, then processor I sends the upper half of its
data to processor I + (K/2), and processor I + (K/2) sends the lower
half of its data to processor I. Both perform merges.

F Note, if the compare-and-swap was flipped, then flip “upper-half” and
“lower half”.
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Practical performance

Complexity
I Total number of comparisons: O(N(log N log2 P)).
I Time: O

(
N
P (log N + log2 P)

)
, assuming each processor sorts N/P

elements in O((N/P) log(N/P)) time and merges two sequences of
N/P elements in O(N/P) time.

Remarks:
I The idea of replacing compare-and-swap modules with processors

that can perform merge using an algorithm optimized for the
processor, is an extremely powerful and general one. It is used in
the design of many practical parallel sorting algorithms.

I Sorting networks are cool because they avoid branches:
F Ideal for SIMD machines that can’t really branch.
F Need to experiment some to see the trade-offs of branch-divergence

vs. higher asymptotic complexity on a GPU.
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Related Algorithms

Counting Networks
I How to match servers to requests.

FFT
I The Platonic Ideal of a Divide-and-Conquer Algorithm
I Used for speech processing, signal processing, and lots of scientific

computing tasks.
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