
Bitonic Sort

Mark Greenstreet

CpSc 418 – Feb 15, 2017

The Bitonic Sort Algorithm
Shuffle, Unshuffle, and Bit-operations
Bitonic Sort In Practice
Related Algorithms

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 1 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Parallelizing Mergesort

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z13

z15

M8

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

M2

M2

M2

M2

M2

M2

M2

M2

M16

M4

M4

M4

M4

x0

M8

x1

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 2 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Bitonic Merge

y0

y1

y2

y3

y4

y5

y6

y7

x0

x1

x2

x3

x4

x5

x6

x7

unsh16 sh16

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

flip8 unsh8 unsh4 sh4 sh8

merge

so
rt

ed
so

rt
ed

so
rt

ed

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Bitonic Merge

y0

y1

y2

y3

y4

y5

y6

y7

x0

x1

x2

x3

x4

x5

x6

x7

sh16flip8 unsh8 unsh4 sh4 sh8unsh16

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

so
rt

ed

so
rt

ed

16

bitonic

merge

so
rt

ed

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Bitonic Merge

y0

y1

y2

y3

y4

y5

y6

y7

x0

x1

x2

x3

x4

x5

x6

x7

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

flip8 unsh8 unsh4 sh4 sh8unsh16 sh16

so
rt

ed

o
d

d

bitonic
merge

8

bitonic
merge

8

so
rt

ed

b
it

o
n

ic

so
rt

ed

ev
en

b
it

o
n

ic

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Bitonic Merge

y0

y1

y2

y3

y4

y5

y6

y7

x0

x1

x2

x3

x4

x5

x6

x7

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z13

z15

flip8 unsh8 unsh4 sh4 sh8unsh16 sh16

bitonic

merge 4 so
rt

ed

b
it

o
n

ic
bitonic

merge 4 so
rt

ed

b
it

o
n

ic

bitonic

merge 4 so
rt

ed

b
it

o
n

ic

bitonic

merge 4 so
rt

ed

b
it

o
n

ic

so
rt

ed

so
rt

ed

o
d

d
ev

en

so
rt

ed
Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Bitonic Merge

y0

y1

y2

y3

y4

y5

y6

y7

x0

x1

x2

x3

x4

x5

x6

x7

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

flip8 unsh8 unsh4 sh4 sh8unsh16 sh16
so

rt
ed

so
rt

ed
so

rt
ed

so
rt

ed

o
d

d
ev

en

so
rt

ed
so

rt
ed

so
rt

ed

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Bitonic Merge

y0

y1

y2

y3

y4

y5

y6

y7

x0

x1

x2

x3

x4

x5

x6

x7

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

sh16flip8 unsh8 unsh4 sh4 sh8unsh16

so
rt

ed

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 3 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Shuffle
Given two sequences, X of length N where N is even, the shuffle
of X is Y = shuffle(X ) where

Y i = X i/2, if i is even
= X (i+N−1)/2, if i is odd

I shuffle([0,1,2,3,4,5,6,7])→ [0,4,1,5,2,6,3,7].
shuffle is like shuffling a deck of cards.

I Split the deck in half.
I Interleave the cards from the two halves.

If N is a power of 2, then shuffle rotates the least-significant bit of
the index to the most significant bit:

shuffle([000, 001, 010, 011, 100, 101, 110, 111]) ->
[000, 100, 001, 101, 010, 110, 011, 111])

If N is odd,
Z i = X i/2, if i is even

= X (i+N)/2, if i is odd

I shuffle([0,1,2,3,4])→ [0,3,1,4,2]

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 4 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Unshuffle

The inverse of shuffle.
Let N = length(Y ) and X = unshuffle(Y ), then

X i = Y 2i , if i < N/2
= X 2i−N+1, if N/2 ≤ i

It’s like dealing a deck of cards into two piles, and then stacking
one pile on top of the other.
If N is a power of 2, then unshuffle rotates the most significant bit
of the index to the least significant bit:
If N is odd,

X i = Y 2i , if i < (N + 1)/2
= X 2i−N , if (N + 1)/2 ≤ i

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 5 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Bit operations: rotr and rotl

rotr(I, W) % Rotate the lower W bits of I one place to the right:
rotr(I, 0) -> I;
rotr(I, W) when is integer(W), W > 0 ->

Mask = (1 bsl W) - 1, % ones in the W least-significant bits
Ilo = I band Mask, % the W least-significant bits of I
Ihi = I band (bnot Mask), % the rest of I
Ilsb = I band 1, % the least-significant-bit of I
% Ilor is Ilo rotated one place to the right
Ilor = (Ilsb bsl (W-1)) bor (Ilo bsr 1),
Ihi bor Ilor.

I rotr(6,3) -> 5;
I rotr(6,4) -> 12;

rotr(I, W) rotates the lower W bits of I 1 place to the left.
Note: rotr(I,1) -> I, and rotl(I,1) -> I.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 6 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Shuffle, Unshuffle, and Bit-Operations

If K is a power of 2, x[0..(K-1)] is the input of a shuffle K
module, and y[0..(K-1)] is the output, then

I the shuffle K operation moves x[i] to y[rotl(i,
log2(k))].

I equivalently: y[j] = x[rotr(j, log2(k))].
If K is a power of 2, x[0..(K-1)] is the input of a unshuffle K
module, and y[0..(K-1)] is the output, then

I the unshuffle K operation moves x[i] to y[rotr(i,
log2(k))].

I equivalently: y[j] = x[rotl(j, log2(k))].

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 7 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


The Initial Unshuffles

Bitonic merge for K elements starts with an unshuffle K,
followed by a unshuffle K

2 , followed by a unshuffle K
4 , . . . ,

followed by a unshuffle 1.
If we let x[0..(K-1)] be the input to this network (I’m assuming
we’ve already done the flip for inputs x[0..((K/2)-1)]), and
y[0..(K-1)] be the output then:

I y[j] = x[rotl(rotl(...rotl(rotl(j, 1), 2), ...,
log2(K)-1), log2(K))]

I and we note that:
rotl(rotl(...rotl(rotl(j, 1), 2), ...,

log2(K)-1), log2(K)) = bitrev(j, log2(K))
where bitrev(j, W) is the bit-reverse of the lower W bits of j.

More specifically, for the 16-way bitonic merge, K = 16 and
log2(K ) = 4.

I If we write array indices as four bits, b3,b2,b1,b0,
I Then y[b3, b2, b1, b0] = x[b0, b1, b2, b3].

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 8 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


The first compare-and-swap

The first compare-and-swap operates on y[b3,b2,b1,0] and
y[b3,b2,b1,1], for all 8 choices of b3, b2, and b1.

This corresponds to a compare-and-swap of x[b0,b1,b2,0] with
x[b0,b1,b2,1].
I’ll call the result of the compare-and-swap z where

I z[b3,b2,b1,0] = min(y[b3,b2,b1,0], y[b3,b2,b1,1]);
I z[b3,b2,b1,1] = max(y[b3,b2,b1,0], y[b3,b2,b1,1]);

And I’ll write z̃ for z with “x indexing”:
I z̃[b3,b2,b1,b0] = z[b0,b1,b2,b3];
I z̃[0,b2,b1,b0] = min(x[0,b2,b1,b0], x[1,b2,b1,b0]);
I z̃[1,b2,b1,b0] = max(x[0,b2,b1,b0], x[1,b2,b1,b0])
I These are comparisons with a “stride” of 8 (for x).

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 9 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


The first shuffle

The first shuffle takes z as an input and I’ll call the output w.
The first shuffle is a shuffle 4; so

I w[i] = z[rotl(i,2)].
I Equivalently, w[b3,b2,b1,b0] = z[b3,b2,b0,b1].

Let
w̃[b3, b2, b1, b0] = w[b0, b1, b3, b2]

= z[b0, b1, b2, b3]
= z̃[b3, b2, b1, b0]

The second stage of compare-and-swap modules operates on
I w[b3,b2,b1,0] and w[b3,b2,b1,1]
I Equivalently, w̃[b1,0,b2,b3] and w̃[b1,1,b2,b3].
I These are comparisons with a stride of 4 for z̃ and w̃.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 10 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


The rest of the merge

In the same way, the third stage of compare-and-swap modules
operates has a stride of 2 for x indices,
And the final stage has a stride of 1.
More generally, to merge two sequences of length 2L:

I Flip the lower sequence
I

I Or, just sort it in reverse in the first place.
I Perform compare-and-swap operations with stride L.
I Perform compare-and-swap operations with stride L/2 – note that

these operate on pairs of elements whose indices differ in the L/2
bit, and all of their other index bits are the same.

I Perform compare-and-swap operations with stride L/4, . . .
I Perform compare-and-swap operations with stride 1 – this

compares the element at 2*i with the element at 2*i+1 for 0 ≤ i
< 2L.

Done!

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 11 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


The “Textbook” Diagram

in[0] out[0]

out[1]

out[2]

out[3]

out[4]

out[5]

out[6]

out[7]

in[1]

in[2]

in[3]

in[4]

in[5]

in[6]

in[7]

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 12 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Flipping Out

What should we do about the flips?
Push them back (right-to-left) through the network

I Keep track of how many flips we’ve accumulated.
I Sort up for an even number of flips.
I Sort down for an odd number of flips.

Flip the wiring in the bottom half of each unshuffle.
In practice:

I Do the one that’s easier for your implementation.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 13 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Bitonic Sort

in[8]

in[9]

in[10]

in[11]

in[12]

in[13]

in[14]

in[15]

in[0]

in[1]

in[2]

in[3]

in[4]

in[5]

in[6]

in[7]

out[0]

out[1]

out[2]

out[3]

out[4]

out[5]

out[6]

out[7]

out[8]

out[9]

out[10]

out[11]

out[12]

out[13]

out[14]

out[15]

merge 8 merge 16
2

merge merge 4

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 14 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Bitonic Sort in practice

Sorting networks can be used to design practical sorting
algorithms.
To sort N values with P processors:

I Divide input into 2P segments of length N
2P .

I Each processor sorts its pair of segments into one long segment.
F The sorted segments are the inputs to the sorting network.

I Now, follow the actions of the sorting network:
F Processor I handles rows 2I and 2I + 1 of the sorting network.
F Each compare-and-swap is replaced with “merge two sorted

sequences and split into top half and bottom half.”
F When the sorting network has a compare-and-swap between rows 2I

and 2I + 1, each processor handles it locally.
F When the sorting network has a compare-and-swap between rows 2I

and 2I + K for K > 1, then processor I sends the upper half of its
data to processor I + (K/2), and processor I + (K/2) sends the lower
half of its data to processor I. Both perform merges.

F Note, if the compare-and-swap was flipped, then flip “upper-half” and
“lower half”.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 15 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Practical performance

Complexity
I Total number of comparisons: O(N(log N log2 P)).
I Time: O

(
N
P (log N + log2 P)

)
, assuming each processor sorts N/P

elements in O((N/P) log(N/P)) time and merges two sequences of
N/P elements in O(N/P) time.

Remarks:
I The idea of replacing compare-and-swap modules with processors

that can perform merge using an algorithm optimized for the
processor, is an extremely powerful and general one. It is used in
the design of many practical parallel sorting algorithms.

I Sorting networks are cool because they avoid branches:
F Ideal for SIMD machines that can’t really branch.
F Need to experiment some to see the trade-offs of branch-divergence

vs. higher asymptotic complexity on a GPU.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 16 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017


Related Algorithms

Counting Networks
I How to match servers to requests.

FFT
I The Platonic Ideal of a Divide-and-Conquer Algorithm
I Used for speech processing, signal processing, and lots of scientific

computing tasks.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 15, 2017 17 / 17

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_15
https://en.wikipedia.org/wiki/2017

