Bitonic Sort

Mark Greenstreet

CpSc 418 - Feb. 10, 2017

- Merging
- Shuffle and Unshuffle
- The Bitonic Sort Algorithm
- Summary
- I know that some of the links in the electronic version are broken. I know that it would be nice if I complete the final slides. I will post to piazza when this is done.

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are made available under the terms of the Creative Commons Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

Parallelizing Mergesort

- We looked at this in the Feb. 8 lecture.
- The challenge is the merge step:
- Can we make a parallel merge?

Merging and the 0-1 Principle

Easy cases					
A	B	A	B	A	B
1	1	1	1	1	1
1	1	1	1	1	1
1	0	0	1	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

The main idea:

- Use divide-and-conquer.
- Given two arrays, A and B, divide them into smaller arrays that we can merge, and then easily combine the results.
- What criterion should we use for dividing the arrays?
- Observation:
- It's easy to merge two arrays of the same size, if they both have the same number of 1 s .
- If they have nearly the same number of 1s, that's easy as well.

Dividing the problem (part 1)

- For simplicity, assume each array has an even number of elements.
- As we go on, we'll assume that each array has an power-of-two number of elements.
- That's the easiest way to explain bitonic sort.
- Note: the algorithm works for arbitrary array sizes.
* See the lecture slides from 2013.
- Divide each array in the middle?
- If A has N elements and N_{1} are ones,
- How many ones are in $A[0, \ldots,(N / 2)-1]$?
- How many ones are in $A[N / 2, \ldots, N-1]$?
- Taking every other element?
- How many ones are in the $A[0,2, \ldots, N-2]$?
- How many ones are in the $A[1,3, \ldots, N-1]$?
- Other schemes?

Dividing the problem (part 2)

- Let A and B be arrays that are sorted into ascending order.
- Let A_{0} be the odd-indexed element of A and A_{1} be the odd-indexed.
- Likewise for B_{0} and B_{1}.
- Key observations:
$\begin{aligned} & \text { HowManyOnes }\left(A_{0}\right) \leq \text { HowManyOnes }\left(A_{1}\right) \leq \operatorname{HowManyOnes}\left(A_{0}\right)+1 \\ & \text { HowManyOnes }\left(B_{0}\right) \leq H o w M a n y O n e s ~ \\ & \left(B_{1}\right)\end{aligned} \leq$ HowManyOnes $\left(B_{0}\right)+1$
- With a bit of algebra, we get
\mid HowManyOnes $\left(A_{0}++B_{1}\right)-$ HowManyOnes $\left(A_{1}++B_{0}\right) \mid \leq 1$
- In English that says that
- If we merge A_{0} with B_{1} to get C_{0},
- and we merge A_{1} with B_{0} to get C_{1},
- then C_{0} and C_{1} differ by at most one in the number of ones that they have.
* This is an "easy" case from slide 3.

Merging

- Given N that is a power of 2 , and arrays A and B that each have N elements and are sorted into ascending order, we can merge them with a sorting network.
- If $N=1$, then just do CompareAndSwap (A, B).
- Otherwise, let A_{0} be the odd-indexed element of A and A_{1} be the odd-indexed, and likewise for B_{0} and B_{1}.
- Merge A_{0} and B_{1} into a single ascending sequence, C_{0}.
- Merge A_{1} and B_{0} into a single ascending sequence, C_{1}.
- Note that the number of ones in C_{0} and C_{1} differ by at most one.
- Merge C_{0} and C_{1} into a single ascending sequence.
- This is an "easy" case from slide 3.
- We can perform this merge using $\mathrm{N} / 2$ /compare-and-swap modules.
- Complexity:
- Depth: $O(\log N)$ - logarithmic parallel time.
- Number of compare-and-swap modules $O(N \log N)$.
- Pause: If you understand this, you've got all of the key ideas of bitonic sorting.
- The bitonic approach just improves on this simple algorithm.

Bitonic Sequences

- A sequence is bitonic if it consists of a monotonically increasing sequence followed by a monotonically decreasing sequence.
- Either of those sub-sequences can be empty.
- We'll also consider a monotonically decreasing followed by monotonically increasing sequence to be bitonic.
- Properties of bitonic sequence
- Any subsequence of a bitonic sequence is bitonic.
- Let A be a bitonic sequence consisting of $\mathbf{0 s}$ and $\mathbf{1 s}$. Let A_{0} and A_{1} be the even- and odd-indexed subsequences of A.
- The number of $\mathbf{1 s}$ in A_{0} and A_{1} differ by at most 1 .
\star We'll examine the number of 0 s on slide 10.

Bitonic Merge - big picture

- Bitonic merge produces a monotonic sequence from an bitonic input.
- Given two sorted sequences, A and B, note that

$$
X=A++\operatorname{reverse}(B)
$$

is bitonic.

- We don't require the lengths of A or B to be powers of two.
- If fact, we don't even require that A and B have the same length.
- Divide X into X_{0} and X_{1}, the even-indexed and odd-indexed subsequences.
- X_{0} and X_{1} are both bitonic.
- The number of 1 s in X_{0} and X_{1} differ by at most 1 .
- Use bitonic merge (recursion) to sort X_{0} and X_{1} into ascending order to get Y_{0} and Y_{1}.
- HowManyOnes $\left(Y_{0}\right)=$ HowManyOnes $\left(X_{0}\right)$, and HowManyOnes $\left(Y_{1}\right)=\operatorname{HowManyOnes}\left(X_{1}\right)$.
- Therefore, the number of $\mathbf{1 s}$ in Y_{0} and Y_{1} differ by at most 1.
- This is an "easy" case from slide 3.

Counting the 0 s and 1 s (even total length)

X_{0}	X_{1}	χ_{0}	X_{1}										
0	0	0	0	0	0	0	0	1	1	1	1	1	1
0	0	0	0	0	0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	0	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1

- First, we'll look at the case when length $(A++B)$ is even.
- Given two sorted sequences, A and B, let

$$
\begin{aligned}
& X_{0}=\operatorname{EvenIndexed}(A++\operatorname{reverse}(B)) \\
& X_{1}=\operatorname{OddIndexed}(A++\operatorname{reverse}(B))
\end{aligned}
$$

- This means that $X[i]=X_{i \bmod 2}[i \operatorname{div} 2]$.
- In English, the elements of X go left-to-right and then bottom-to-top in X_{0} and X_{1}.
- The number of $1 \mathbf{s}$ in X_{0} and the number of ones in X_{1} differ by at most 1 .
- Likewise for the number of $0 \mathbf{s}$.

Counting the 0 s and 1 s (odd total length)

X_{0}		X_{0}		X_{0}		X_{0}	X_{1}	X_{0}		X_{0}	X_{1}	X_{0}	X_{1}	X_{0}	X_{1}
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	0	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0		0		0		0		0		0		0		1	

- Let $N=\operatorname{length}(A++B)$, where N is odd.
- The number of $\mathbf{1 s}$ in X_{0} and the number of ones in X_{1} differ by at most 1.
- The number of 0 s in $X_{0}[1, \ldots,\lfloor N / 2\rfloor]$ and the number of zeros in X_{1} differ by at most 1 .
- Either $X_{0}[0]$ or $X_{0}[\lfloor N / 2\rfloor]$ is the least element of $A++B$.

After applying bitonic merge to X_{0} and Y_{0}

- Let $N=$ length $(A++B)$.
- If N is even,
- Any out of order elements are in the same row, i.e. $X_{0}[i]>X_{1}[i]$ for some $0 \leq i<N / 2$.
- If N is odd
- Any out of order elements are of the form $X_{0}[i+1]>X_{1}[i]$ for some $0 \leq i<N / 2$.
- $X_{0}[0]$ is the least element of X_{0} and X_{1}.

The complexity of bitonic merge

- We'll count the compare-and-swap operations
- Is it OK to ignore reversing one array, concatenating the arrays, separating the even- and odd-indexed elements, and recombining them later?
- Yes. The number of these operations is proportional to the number of compare-and-swaps
- Yes. Even better, in the next lecture, we'll show how to eliminate most of these data-shuffling operations.
- A bitonic merge of N elements requires:
- two bitonic merges of $N / 2$ items (if $N>2$)
- $\lfloor N / 2\rfloor$ compare-and-swap operations.
- The total number of compare and swap operations is $O(N \log N)$.

Bitonic-Sort, and it's complexity

Shuffle and unshuffle

- Shuffle is like what you can do with a deck of cards:
- Divide the deck in half
- Select cards alternately from the two halves.
- Shuffle is a circular-right-shift of the index bits.
\star Assuming the number of cards in the deck is a power of two.
- Unshuffle is the inverse of shuffle.
- Unshuffling a deck of cards is dealing to two players.
- Unshuffle is a circular-left-shift of the index bits.

