
Bitonic Sort

Mark Greenstreet

CpSc 418 – Feb. 10, 2017

Merging
Shuffle and Unshuffle
The Bitonic Sort Algorithm
Summary
I know that some of the links in the electronic version are broken. I
know that it would be nice if I complete the final slides. I will post
to piazza when this is done.

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 1 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

Parallelizing Mergesort

λ

$N$$\frac{2N}{P}$$\frac{N}{P} \log \frac{N}{P}$...$\frac{4N}{P}$

99

4

−2
M

16

1699

99

−6

M

4

−6

11

0

0
M

11

−2

14

14

16

4

11

99

M

M

M

−2

4

11

14

M −6

−2

0

−6

0

16

14

N2N
P

N
P log N

P
4N
P

We looked at this in the Feb. 8 lecture.
The challenge is the merge step:

I Can we make a parallel merge?

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 2 / ??

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/lecture/02-08/slides.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

Merging and the 0-1 Principle

Easy cases
A B A B A B
1 1 1 1 1 1
1 1 1 1 1 1
1 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

The main idea:
Use divide-and-conquer.

I Given two arrays, A and B, divide them into smaller arrays that we
can merge, and then easily combine the results.

I What criterion should we use for dividing the arrays?
Observation:

I It’s easy to merge two arrays of the same size, if they both have the
same number of 1s.

I If they have nearly the same number of 1s, that’s easy as well.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 3 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

Dividing the problem (part 1)

For simplicity, assume each array has an even number of
elements.

I As we go on, we’ll assume that each array has an power-of-two
number of elements.

I That’s the easiest way to explain bitonic sort.
I Note: the algorithm works for arbitrary array sizes.

F See the lecture slides from 2013.

Divide each array in the middle?
I If A has N elements and N1 are ones,
I How many ones are in A[0, . . . , (N/2)− 1]?
I How many ones are in A[N/2, . . . ,N − 1]?

Taking every other element?
I How many ones are in the A[0,2, . . . ,N − 2]?
I How many ones are in the A[1,3, . . . ,N − 1]?

Other schemes?

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 4 / ??

http://www.ugrad.cs.ubc.ca/~cs418/2013-1/lecture/11-12/slides.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

Dividing the problem (part 2)
Let A and B be arrays that are sorted into ascending order.

I Let A0 be the odd-indexed element of A and A1 be the odd-indexed.
I Likewise for B0 and B1.

Key observations:

HowManyOnes(A0) ≤ HowManyOnes(A1) ≤ HowManyOnes(A0) + 1
HowManyOnes(B0) ≤ HowManyOnes(B1) ≤ HowManyOnes(B0) + 1

With a bit of algebra, we get∣∣∣HowManyOnes(A0 ++ B1)− HowManyOnes(A1 ++ B0)
∣∣∣ ≤ 1

In English that says that
I If we merge A0 with B1 to get C0,
I and we merge A1 with B0 to get C1,
I then C0 and C1 differ by at most one in the number of ones that

they have.
F This is an “easy” case from slide 3.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 5 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

Merging
Given N that is a power of 2, and arrays A and B that each have N
elements and are sorted into ascending order, we can merge
them with a sorting network.
If N = 1, then just do CompareAndSwap(A, B).
Otherwise, let A0 be the odd-indexed element of A and A1 be the
odd-indexed, and likewise for B0 and B1.
Merge A0 and B1 into a single ascending sequence, C0.
Merge A1 and B0 into a single ascending sequence, C1.

I Note that the number of ones in C0 and C1 differ by at most one.
Merge C0 and C1 into a single ascending sequence.

I This is an “easy” case from slide 3.
I We can perform this merge using N/2/compare-and-swap modules.

Complexity:
I Depth: O(log N) – logarithmic parallel time.
I Number of compare-and-swap modules O(N log N).

Pause: If you understand this, you’ve got all of the key ideas of
bitonic sorting.

I The bitonic approach just improves on this simple algorithm.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 6 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

Bitonic Sequences

A sequence is bitonic if it consists of a monotonically increasing
sequence followed by a monotonically decreasing sequence.

I Either of those sub-sequences can be empty.
I We’ll also consider a monotonically decreasing followed by

monotonically increasing sequence to be bitonic.
Properties of bitonic sequence

I Any subsequence of a bitonic sequence is bitonic.
I Let A be a bitonic sequence consisting of 0s and 1s. Let A0 and A1

be the even- and odd-indexed subsequences of A.
I The number of 1s in A0 and A1 differ by at most 1.

F We’ll examine the number of 0s on slide 10.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 7 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

Bitonic Merge – big picture
Bitonic merge produces a monotonic sequence from an bitonic
input.
Given two sorted sequences, A and B, note that

X = A ++ reverse(B)

is bitonic.
I We don’t require the lengths of A or B to be powers of two.
I If fact, we don’t even require that A and B have the same length.

Divide X into X0 and X1, the even-indexed and odd-indexed
subsequences.

I X0 and X1 are both bitonic.
I The number of 1s in X0 and X1 differ by at most 1.

Use bitonic merge (recursion) to sort X0 and X1 into ascending
order to get Y0 and Y1.

I HowManyOnes(Y0) = HowManyOnes(X0), and
HowManyOnes(Y1) = HowManyOnes(X1).

I Therefore, the number of 1s in Y0 and Y1 differ by at most 1.
I This is an “easy” case from slide 3.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 8 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

Counting the 0s and 1s (even total length)
X0 X1 X0 X1 X0 X1 X0 X1 X0 X1 X0 X1 X0 X1
0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 1 1 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1

First, we’ll look at the case when length(A ++ B) is even.
Given two sorted sequences, A and B, let

X0 = EvenIndexed(A ++ reverse(B))
X1 = OddIndexed(A ++ reverse(B))

I This means that X [i] = Xi mod 2[i div 2].
I In English, the elements of X go left-to-right and then bottom-to-top in X0

and X1.

The number of 1s in X0 and the number of ones in X1 differ by at most 1.
Likewise for the number of 0s.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 9 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

Counting the 0s and 1s (odd total length)

X0 X1 X0 X1 X0 X1 X0 X1 X0 X1 X0 X1 X0 X1 X0 X1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1

Let N = length(A ++ B), where N is odd.
The number of 1s in X0 and the number of ones in X1 differ by at
most 1.
The number of 0s in X0[1, . . . , bN/2c] and the number of zeros in
X1 differ by at most 1.
Either X0[0] or X0[bN/2c] is the least element of A ++ B.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 10 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

After applying bitonic merge to X0 and Y0

Y0 Y1 Y0 Y1 Y0 Y1 Y0 Y1 Y0 Y1 Y0 Y1 Y0 Y1 Y0 Y1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1
0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 1

Let N = length(A ++ B).

If N is even,
I Any out of order elements are in the same row, i.e. X0[i] > X1[i] for

some 0 ≤ i < N/2.
If N is odd

I Any out of order elements are of the form X0[i + 1] > X1[i] for some
0 ≤ i < N/2.

I X0[0] is the least element of X0 and X1.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 11 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

The complexity of bitonic merge

We’ll count the compare-and-swap operations
I Is it OK to ignore reversing one array, concatenating the arrays,

separating the even- and odd-indexed elements, and recombining
them later?

I Yes. The number of these operations is proportional to the number
of compare-and-swaps

I Yes. Even better, in the next lecture, we’ll show how to eliminate
most of these data-shuffling operations.

A bitonic merge of N elements requires:
I two bitonic merges of N/2 items (if N > 2)
I bN/2c compare-and-swap operations.

The total number of compare and swap operations is O(N log N).

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 12 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

Bitonic-Sort, and it’s complexity

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 13 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

Shuffle and unshuffle

Shuffle is like what you can do with a deck of cards:
I Divide the deck in half
I Select cards alternately from the two halves.
I Shuffle is a circular-right-shift of the index bits.

F Assuming the number of cards in the deck is a power of two.

Unshuffle is the inverse of shuffle.
I Unshuffling a deck of cards is dealing to two players.
I Unshuffle is a circular-left-shift of the index bits.

Mark Greenstreet Bitonic Sort CS 418 – Feb. 10, 2017 14 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_10
https://en.wikipedia.org/wiki/2017

