Sorting Networks

Mark Greenstreet

CpSc 418 - Feb. 8, 2017

- Parallelizing mergesort and/or quicksort
- Sorting Networks
- The 0-1 Principle
- Summary

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are made available under the terms of the Creative Commons Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

Parallelizing Mergesort

We could use reduce?

Parallelizing Mergesort

We could use reduce?

Parallelizing Mergesort

We could use reduce?

Parallelizing Mergesort

 We could use reduce?

Total time: $\frac{N}{P}(\log N+2(P-1)-\log P)+(\log P) \lambda$

Parallelizing Quicksort

How would you write a parallel version of quicksort?

Sorting Networks

Sorting Network for 2-elements $\operatorname{in}[1] \rightarrow a \max \longrightarrow \operatorname{out[1]}$
$\operatorname{in}[0] \rightarrow b \min \longrightarrow \operatorname{out[0]}$

A Sorting Network for 3-elements

Sorting Networks - Drawing

Sorting Networks - Examples

Operations of the same color can be performed in parallel.

See: http: / /pages.ripco.net/~jgamble/nw.html

Sorting Networks: Definition

Structural version:

- A sorting network is an acyclic network consisting of compare-and-swap modules.
- Each primary input is connected either to the input of exactly one compare-and-swap module or to exactly one primary output.
- Each compare-and-swap input is connected either to a primary input or to the output of exactly one compare-and-swap module.
- Each compare-and-swap output is connected either to a primary output or to the input of exactly one compare-and-swap module.
- Each primary output is connected either to the output of exactly one compare-and-swap module or to exactly one primary input.
- More formally, a sorting network is either
- the identity network (no compare and swap modules).
- a sorting network, S composed with a compare-and-swap module such that two outputs of S are the inputs to the compare-and-swap, and the outputs of the compare-and-swap are outputs of the new sorting network (along with the other outputs of the original network).

Sorting Networks: Definition

Decision-tree version:

- Let v be an arbitrary vertex of a decision tree, and let x_{i} and x_{j} be the variables compared at vertex v.
- A decision tree is a sorting network iff for every such vertex, the left subtree is the same as the right subtree with x_{i} and x_{j} exchanged.

The 0-1 Principle

If a sorting network correctly sorts all inputs consisting only of 0s and 1 s , then it correctly sorts inputs consisting of arbitrary (comparable) values.

- The 0-1 principle doesn't hold for arbitrary algorithms:
- Consider the following linear-time "sort"
- In linear time, count the number of zeros, $n z$, in the array.
- Set the first $n z$ elements of the array to zero.
- Set the remaining elements to one.
- This correctly sorts any array consisting only of 0s and 1s, but does not correctly sort other arrays.
- By restricting our attention to sorting networks, we can use the 0-1 principle.

The 0-1 Principle: Proof Sketch

- We will show the contrapositive: if y is not sorted properly, then there exists an \tilde{x} consisting of only 0 s and 1 s that is not sorted properly.

$\tilde{\boldsymbol{x}}^{\text {the same sorting }} \underset{\text { network }}{ } \tilde{\boldsymbol{y}}$	
\rightarrow	\rightarrow ?
$0 \rightarrow$	\rightarrow ?
$1 \rightarrow$	
0	\rightarrow ?
0	
$0 \rightarrow$	

- Choose $i<j$ such that $y_{i}>y_{j}$.
- Let $\tilde{x}_{k}=0$ if $x_{k}<x_{i}$ and $\tilde{x}_{k}=1$ otherwise.
- Clearly \tilde{x} consists only of 0 s and 1 s .
- We will show that the sorting network does not sort correctly with input \tilde{x}.

Monotonicity Lemma

Lemma: sorting networks commute with monotonic functions.

- Let S be a sorting network with n inputs an N outputs.
- I'll write x_{0}, \ldots, x_{n-1} to denote the inputs of S.
- I'll write y_{0}, \ldots, y_{n-1} to denote the outputs of S.
- Let f be a monotonic function.
- If $x \leq y$, then $f(x) \leq f(y)$.
- The monotonicity lemma says
- applying S and then f produces the same result as
- applying f and then S.
- Observation: $\mathrm{f}(\mathrm{X})$ when $\mathrm{X}<X_{i}->0 ; \mathrm{f}()_{-}$-> 1 . is monotonic.

Compare-and-Swap Commutes with Monotonic Functions

Compare-and-Swap commutes with monotonic functions.

- Case $x \leq y$:

$$
\begin{aligned}
f(x) & \leq f(y), & & \text { because } f \text { is monotonic. } \\
\max (f(x), f(y)) & =f(y), & & \text { because } f(x) \leq f(y) \\
\max (f(x), f(y)) & =f(\max (x, y)), & & \text { because } x \leq y
\end{aligned}
$$

- Case $x \geq y$: equivalent to the $x \leq y$ case.
- \square

The monotonicity lemma - proof sketch

Induction on the structure of the sorting network, S. Base case:

- The simplest sorting network, S_{0} is the identity function.
- It has 0 compare-and-swap modules.
- Because S_{0} is the identity function, $S_{0}(f(x))=f(x)=f\left(S_{0}(x)\right)$.

The monotonicity lemma - induction step

- Let S_{m} be a sorting network with n inputs and let $0 \leq i<j<n$.
- Let S_{m+1} be the sorting network obtained by composing a compare-and-swap module with outputs i and j of S_{m}.
- We can "move" the f operations from the outputs of the new compare-and-swap to the inputs (see slide 12).
- We can "move" the f operations from the outputs S_{m} to the inputs (induction hypothesis).
- Therefore, S_{m+1} commutes with f.

The 0-1 Principle

If a sorting network correctly sorts all inputs consisting only of Os and 1 s , then it correctly sorts inputs of any values.

I'll prove the contrapositive.

- If a sorting network does not correctly sort inputs of any values, then it does not correctly sort all inputs consisting only of 0 s and 1 s .
- Let S be a sorting network, let x be an input vector, and let $y=S(x)$, such that there exist i and j with $i<j$ such that $y_{i}>y_{j}$.
- Let $f(x)=0, \quad$ if $x<y_{i}$

$$
\begin{aligned}
& =1, \quad \text { if } x \geq y_{i} \\
\tilde{y} & =S(f(x))
\end{aligned}
$$

- By the definition of $f, f(x)$ is an input consisting only of 0 s and 1 s .
- By the monotonicity lemma, $\tilde{y}=f(y)$. Thus,

$$
\tilde{y}_{i}=f\left(y_{i}\right)=1>0=f\left(y_{j}\right)=\tilde{y}_{j}
$$

- Therefore, S does not correctly sort an input consisting only of 0 s and 1 s .

Summary

- Sequential sorting algorithms don't parallelize in an "obvious" way because they tend to have sequential bottlenecks.
- Later, we'll see that we can combine ideas from sorting networks and sequential sorting algorithms to get practical, parallel sorting algorithms.
- Sorting networks are a restricted class of sorting algorithms
- Based on compare-and-swap operations.
- The parallelize well.
- They don't have control-flow branches - this makes them attractive for architectures with large branch-penalties.
- The zero-one principle:
- If a sorting-network sorts all inputs of 0s and 1s correctly, then it sorts all inputs correctly.
- This allows many sorting networks to be proven correct by counting arguments.

Preview

February 10: Bitonic Sorting (part 1)

Reading:
https://en.wikipedia.org/wiki/Bitonic_sorter
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
February 13: Family Day - no class
February 15: Bitonic Sorting (part 2)
Homework: HW 3 earlybird (11:59pm), HW 4 goes out.
February 17: Map-Reduce
Homework: HW 3 due (11:59pm).
HW 4 goes out
February 27: TBD
March 1: Midterm
March 3: GPU Overview
Reading The GPU Computing Era
March 6: Intro. to CUDA
Reading Kirk \& Hwu Ch. 2
March 8: CUDA Threads, Part 1
Reading Kirk \& Hwu Ch. 3
Homework: HW 4 earlybird (11:59pm)
March 8: CUDA Threads, Part 2
Homework: HW4 due (11:59pm).

Review 1

- Why don't traditional, sequential sorting algorithms parallelize well?
- Try to parallelize another sequential sorting algorithm such as heap sort? What issues do you encounter?
- Consider network sort-5(v2) from slide 6. Use the 0-1 principle to show that it sorts correctly?
- What if the input is all 0s?
-What if the input has exactly one 1 ?
- What if the input has exactly two 1s?
- What if the input has exactly three 1s? Note, it may be simpler to think of this the input having exactly two 0s.
-What if the input has exactly four 1s? Five ones?

Review 2

Consider the two sorting networks shown above. One sorts correctly; the other does not.

- Identify the network that sorts correctly, and prove it using the 0-1 principle.
- Show that the other network does not sort correctly by giving an input consisting of 0 s and 1 s that is not sorted correctly.

Review 3

I claimed that max and min can be computed without branches. We could work out the hardware design for a compare-and-swap module. Instead, consider an algorithm that takes two "words" as arguments - each word is represented as a list of characters. The algorithm is supposed to output the two words, but in alphabetical order. For example:

```
% See: http://www.ugrad.cs.ubc.ca/~cs418/2016-2/lecture/02-08/cas.erl
compareAndSwap(L1, L2) when is_list(L1), is_list(L2) ->
    compareAndSwap(L1, L2, []).
compareAndSwap([], L2, X) ->
    {lists:reverse(X), lists:reverse(X, L2)};
compareAndSwap(L1, [], X) ->
    {lists:reverse(X), lists:reverse(X, L1)};
compareAndSwap([H1 | T1], [H2 | T2], X) when H1 == H2 ->
    compareAndSwap(T1, T2, [H1 | X]);
compareAndSwap(L1=[H1 | _], L2=[H2 | _], X) when H1 < H2 ->
    {lists:reverse(X, L1), lists:reverse(X, L2)};
compareAndSwap(L1, L2, X) ->
    {lists:reverse(X, L2), lists:reverse(X, L1)}.
```

Show that compareAndSwap can be implemented as a scan operation.

