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Parallelizing Mergesort
We could use reduce?
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Parallelizing Mergesort
We could use reduce?
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P (log N + 2(P − 1)− log P) + (log P)λ
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Parallelizing Quicksort

How would you write a parallel version of quicksort?
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Sorting Networks

Sorting Network for 2−elements
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A Sorting Network for 3−elements
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Sorting Networks – Drawing
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Sorting Networks – Examples
sort−4 sort−5 (v1) sort−5 (v2)

sort−8

the same color
Operations of

can be performed
in parallel.

See: http://pages.ripco.net/˜jgamble/nw.html
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Sorting Networks: Definition
Structural version:

A sorting network is an acyclic network consisting of
compare-and-swap modules.

I Each primary input is connected either to the input of exactly one
compare-and-swap module or to exactly one primary output.

I Each compare-and-swap input is connected either to a primary
input or to the output of exactly one compare-and-swap module.

I Each compare-and-swap output is connected either to a primary
output or to the input of exactly one compare-and-swap module.

I Each primary output is connected either to the output of exactly one
compare-and-swap module or to exactly one primary input.

More formally, a sorting network is either
I the identity network (no compare and swap modules).
I a sorting network, S composed with a compare-and-swap module

such that two outputs of S are the inputs to the compare-and-swap,
and the outputs of the compare-and-swap are outputs of the new
sorting network (along with the other outputs of the original
network).
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Sorting Networks: Definition
Decision-tree version:
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Let v be an arbitrary vertex of a decision tree, and let xi and xj be
the variables compared at vertex v .
A decision tree is a sorting network iff for every such vertex, the
left subtree is the same as the right subtree with xi and xj
exchanged.
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The 0-1 Principle

If a sorting network correctly sorts all inputs consisting only of 0s and
1s, then it correctly sorts inputs consisting of arbitrary (comparable)
values.

The 0-1 principle doesn’t hold for arbitrary algorithms:
I Consider the following linear-time “sort”
I In linear time, count the number of zeros, nz, in the array.
I Set the first nz elements of the array to zero.
I Set the remaining elements to one.
I This correctly sorts any array consisting only of 0s and 1s, but does

not correctly sort other arrays.

By restricting our attention to sorting networks, we can use the 0-1
principle.
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The 0-1 Principle: Proof Sketch

We will show the contrapositive: if y is not sorted properly, then
there exists an x̃ consisting of only 0s and 1s that is not sorted
properly.
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Choose i < j such that yi > yj .
Let x̃k = 0 if xk < xi and x̃k = 1 otherwise.

I Clearly x̃ consists only of 0s and 1s.
I We will show that the sorting network does not sort correctly with

input x̃ .
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Monotonicity Lemma
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Lemma: sorting networks commute with monotonic functions.

Let S be a sorting network with n inputs an N outputs.
I I’ll write x0, . . . , xn−1 to denote the inputs of S.
I I’ll write y0, . . . , yn−1 to denote the outputs of S.

Let f be a monotonic function.
I If x ≤ y , then f (x) ≤ f (y).

The monotonicity lemma says
I applying S and then f produces the same result as
I applying f and then S.

Observation: f(X) when X < Xi -> 0; f( ) -> 1.
is monotonic.
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Compare-and-Swap Commutes with Monotonic
Functions
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Compare-and-Swap commutes with monotonic functions.

Case x ≤ y :

f (x) ≤ f (y), because f is monotonic.
max(f (x), f (y)) = f (y), because f (x) ≤ f (y)
max(f (x), f (y)) = f (max(x , y)), because x ≤ y

Case x ≥ y : equivalent to the x ≤ y case.
2
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The monotonicity lemma – proof sketch
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Induction on the structure of the sorting network, S.
Base case:

The simplest sorting network, S0 is the identity function.
It has 0 compare-and-swap modules.
Because S0 is the identity function, S0(f (x)) = f (x) = f (S0(x)).
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The monotonicity lemma – induction step

so
rt

in
g
 n

et
w

o
rk

so
rt

in
g
 n

et
w

o
rk

so
rt

in
g
 n

et
w

o
rk

x0

xi

f

fxi

a
b

max
min

x1

x0

x2

xn−1

xn−2

xj

xi+1

y0

y1

y2

yn−1

yn−2

yj

yi+1

yi

y0

y1

y2

yn−1

yn−2

yj

yi+1

yi

a
b

max
min

f

f

f

f

f

f

f

f

x0

x1

x2

xn−1

xn−2

xj

xi+1

xi

Sm

a
b

max
min

y0

y1

y2

yn−1

yn−2

yj

yi+1

yi

SmSm

f

f

f

f

f

f

f

f

f

f

f

f

f

f

x1

x2

xn−1

xn−2

xj

xi+1

Let Sm be a sorting network with n inputs and let 0 ≤ i < j < n.
Let Sm+1 be the sorting network obtained by composing a
compare-and-swap module with outputs i and j of Sm.
We can “move” the f operations from the outputs of the new
compare-and-swap to the inputs (see slide 12).
We can “move” the f operations from the outputs Sm to the inputs
(induction hypothesis).
Therefore, Sm+1 commutes with f .
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The 0-1 Principle
If a sorting network correctly sorts all inputs consisting only of 0s and
1s, then it correctly sorts inputs of any values.
I’ll prove the contrapositive.

If a sorting network does not correctly sort inputs of any values, then it
does not correctly sort all inputs consisting only of 0s and 1s.

Let S be a sorting network, let x be an input vector, and let y = S(x),
such that there exist i and j with i < j such that yi > yj .

Let f (x) = 0, if x < yi
= 1, if x ≥ yi

ỹ = S(f (x))

By the definition of f , f (x) is an input consisting only of 0s and 1s.

By the monotonicity lemma, ỹ = f (y). Thus,

ỹi = f (yi) = 1 > 0 = f (yj) = ỹj

Therefore, S does not correctly sort an input consisting only of 0s and
1s.

2
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Summary

Sequential sorting algorithms don’t parallelize in an “obvious” way
because they tend to have sequential bottlenecks.

I Later, we’ll see that we can combine ideas from sorting networks
and sequential sorting algorithms to get practical, parallel sorting
algorithms.

Sorting networks are a restricted class of sorting algorithms
I Based on compare-and-swap operations.
I The parallelize well.
I They don’t have control-flow branches – this makes them attractive

for architectures with large branch-penalties.
The zero-one principle:

I If a sorting-network sorts all inputs of 0s and 1s correctly, then it
sorts all inputs correctly.

I This allows many sorting networks to be proven correct by counting
arguments.
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Preview

February 10: Bitonic Sorting (part 1)
Reading: https://en.wikipedia.org/wiki/Bitonic_sorter

http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm

February 13: Family Day – no class
February 15: Bitonic Sorting (part 2)

Homework: HW 3 earlybird (11:59pm), HW 4 goes out.
February 17: Map-Reduce

Homework: HW 3 due (11:59pm).
HW 4 goes out

February 27: TBD
March 1: Midterm
March 3: GPU Overview

Reading The GPU Computing Era
March 6: Intro. to CUDA

Reading Kirk & Hwu Ch. 2
March 8: CUDA Threads, Part 1

Reading Kirk & Hwu Ch. 3
Homework: HW 4 earlybird (11:59pm)

March 8: CUDA Threads, Part 2
Homework: HW4 due (11:59pm).
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Review 1

Why don’t traditional, sequential sorting algorithms parallelize
well?
Try to parallelize another sequential sorting algorithm such as
heap sort? What issues do you encounter?
Consider network sort-5(v2) from slide 6. Use the 0-1 principle to
show that it sorts correctly?

I What if the input is all 0s?
I What if the input has exactly one 1?
I What if the input has exactly two 1s?
I What if the input has exactly three 1s? Note, it may be simpler to

think of this the input having exactly two 0s.
I What if the input has exactly four 1s? Five ones?
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Review 2

sort−5 (v4)sort−5 (v3)

Consider the two sorting networks shown above. One sorts correctly;
the other does not.

Identify the network that sorts correctly, and prove it using the 0-1
principle.
Show that the other network does not sort correctly by giving an
input consisting of 0s and 1s that is not sorted correctly.
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Review 3
I claimed that max and min can be computed without branches. We could
work out the hardware design for a compare-and-swap module. Instead,
consider an algorithm that takes two “words” as arguments – each word is
represented as a list of characters. The algorithm is supposed to output the
two words, but in alphabetical order. For example:

% See: http://www.ugrad.cs.ubc.ca/˜cs418/2016-2/lecture/02-08/cas.erl
compareAndSwap(L1, L2) when is list(L1), is list(L2) ->

compareAndSwap(L1, L2, []).
compareAndSwap([], L2, X) ->

{lists:reverse(X), lists:reverse(X, L2)};
compareAndSwap(L1, [], X) ->

{lists:reverse(X), lists:reverse(X, L1)};
compareAndSwap([H1 | T1], [H2 | T2], X) when H1 == H2 ->

compareAndSwap(T1, T2, [H1 | X]);
compareAndSwap(L1=[H1 | ], L2=[H2 | ], X) when H1 < H2 ->

{lists:reverse(X, L1), lists:reverse(X, L2)};
compareAndSwap(L1, L2, X) ->

{lists:reverse(X, L2), lists:reverse(X, L1)}.

Show that compareAndSwap can be implemented as a scan operation.
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