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Objectives

Learn about models of computation
I Sequential: Random Access Machine (RAM)
I Parallel

F Parallel Random Access Machine (PRAM)
F Candidate Type Architecture (CTA)
F Latency-Overhead-Bandwidth-Processors (LogP)

An entertaining algorithm and its analysis
I If a model has invalid assumptions,
I then we can show that algorithm 1 is faster than algorithm 2,
I but in real life algorithm 2 is faster.
I Valiant’s algorithm also provides some mathematical entertainment.
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The RAM Model

RAM = Random Access Machine
Axioms of the model

I Machines work on words of a “reasonable” size.
I A machine can perform a “reasonable” operation on a word as a

single step.
F such operations include addition, subtraction, multiplication, division,

comparisons, bitwise logical operations, bitwise shifts and rotates.
I The machine has an unbounded amount of memory.

F A memory address is a “word” as described above.
F Reading or writing a word of memory can be done in a single step.
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The Relevance of the RAM Model

If a single step of a RAM corresponds (to within a factor close to
1) to a single step of a real machine.
Then algorithms that are efficient on a RAM will also be efficient
on a real machine.
Historically, this assumption has held up pretty well.

I For example, mergesort and quicksort are better than
bubblesort on a RAM and on real machines, and the RAM model
predicts the advantage quite accurately.

I Likewise, for many other algorithms
F graph algorithms, matrix computations, dynamic programming, . . . .
F hard on a RAM generally means hard on a real machine as well: NP

complete problems, undecidable problems, . . . .
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The Irrelevance of the RAM Model
The RAM model is based on assumptions that don’t correspond to
physical reality:

Memory access time is highly non-uniform.
I Architects make heroic efforts to preserve the illusion of uniform

access time fast memory –
F caches, out-of-order execution, prefetching, . . .

I – but the illusion is getting harder and harder to maintain.
F Algorithms that randomly access large data sets run much slower

than more localized algorithms.
F Growing memory size and processor speeds means that more and

more algorithms have performance that is sensitive to the memory
hierarchy.

The RAM model does not account for energy:
I Energy is the critical factor in determining the performance of a

computation.
I The energy to perform an operation drops rapidly with the amount

of time allowed to perform the operation.
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The PRAM Model
PRAM = Parallel Random Access Machine

Axioms of the model
I A computer is composed of multiple processors and a shared

memory.
I The processors are like those from the RAM model.

F The processors operate in lockstep.
F I.e. for each k > 0, all processors perform their k th step at the same

time.
I The memory allows each processor to perform a read or write in a

single step.
F Multiple reads and writes can be performed in the same cycle.
F If each processor accesses a different word, the model is simple.
F If two or more processors try to access the same word on the same

step, then we get a bunch of possible models:
EREW: Exclusive-Read, Exclusive-Write
CREW: Concurrent-Read, Exclusive-Write
CRCW: Concurrent-Read, Concurrent-Write
F See slide 25 for more details.
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The Irrelevance of the PRAM Model

The PRAM model is based on assumptions that don’t correspond to
physical reality:

Connecting N processors with memory requires a switching network.
I Logic gates have bounded fan-in and fan-out.
I ⇒ any switch fabric with N inputs (and/or N outputs) must have

depth of at least log N.
I This gives a lower bound on memory access time of Ω(log N).

Processors exist in physical space
I N processors take up Ω(N) volume.
I The processor has a diameter of Ω(N1/3).
I Signals travel at a speed of at most c (the speed of light).
I This gives a lower bound on memory access time of Ω(N1/3).
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The CTA Model

CTA = Candidate Type Architecture
Axioms of the model

I A computer is composed of multiple processors.
I Each processor has

F Local memory that can be accessed in a single processor step (like
the RAM model).

F A small number of connections to a communications network.
I There is a communication network connecting the processors.

F The general model:
F The communication network is a graph where all vertices

(processors and switches) have bounded degree.
F Each edge has an associated bandwidth and latency.

F The simplified model:
F Global actions have a cost of λ times the cost of local actions.
F λ is assumed to be “large”.

F The exact communication mechanism is not specified.
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The (Ir)Relevance of the CTA Model

Recognizing that communication is expensive is the one, most
important point to grasp to understand parallel performance.

I CTA highlights the central role of communication.
I PRAM ignores it.

The general model is parameterized by the communication
network

I Can we apply results from analysing a machine with a 3-D toroidal
mesh to a machine with fat trees?

I PRAM ignores it.
The simple model neglects bandwidth issues

I Messages are assumed to be “small”.
I But, bigger messages often lead to better performance.
I If we talk about bandwidth, do we mean the bandwidth of each link?
I Or, do we mean the bisection bandwidth?
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The LogP Model

Motivation (1993): convergence of parallel architectures
I Individual nodes have microprocessors and memory of a

workstation or PC.
I A large parallel machine had at most 2000 such nodes.
I Point-to-point interconnect –

F Network bandwidth much lower than memory bandwidth.
F Network latency much higher than memory latency.
F Relatively small network diameter: 5 to 20 “hops” for a 1000 node

machine.

The model parameters:
L the latency of the communication network fabric
o the overhead of a communication action
g the bandwidth of the communication network
P the number of processors
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Why does g stand for “bandwidth”?

Marketing!

What if we used b for “bandwidth”?
Need a catchy acronym with ‘`’, ‘o’, ‘b’, and ’p’ . . .

I got it: BLOP
I but the marketing department vetoed it.
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logP in practice

The authors got some surprisingly good performance prediction
for a few machines and a few algorithms by finding the “right”
values for `, o, g, and P for each architecture.
It’s rare to get a model that comes to within 10-20% on several
examples. So, this looked very promising.
Since then, logP seems to be a model with more parameters than
simplified CTA, but not particularly better accuracy.
Good to know about, because if you meet an algorithms expert,
they’ll probably know that PRAM is unrealistic.

I Then, you’ll often hear “What about logP”? – the paper has lots of
citations.

I In practice, it’s a slightly fancier was of saying “communication
costs matter”.
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Fun with the PRAM Model

Finding the maximum element of an array of N elements.
The obvious approach

I Do a reduce.
I Use N/2 processors to compute the result in Θ(log2 N) time.

max(x(0)...x(7))

x(1) x(2) x(3) x(4) x(5) x(6) x(7)

max max max max

max max

max

x(0)
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A Valiant Solution

L. Valiant, 1975
Use N processors.
The big picture:

I Initially, we can use clumps of three processors to find the largest of
three elements in O(1) time – just do all three comparisons.

I Now, we have N/3 elements but we still have N processors. We
can perform all of the comparisons for larger clusters of elements in
O(1) time in a single step because we have more processors per
element.

I Valiant showed that the size of a cluster for which we can do all of
the pair-wise comparisons in a single step grows as 2k2

where k is
the number of steps.

I This leads to a log log N time bound for finding the max.
I’ll sketch the proof.
Then we’ll look at why this shows that you can’t actually build a PRAM.
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Valiant’s algorithm, step 1
Step 1:

I Divide the N elements into N/3 sets of size 3.
I Assign 3 processors to each set, and perform all three pairwise

comparisons in parallel.
I Mark all the “losers” (requires a CRCW PRAM) and move the max

of each set of three to a fixed location.
The PRAM operations in a bit more detail.

I Initially, every element has a flag set to 1 that says “might be the
max”.

I When
(

k
2

)
processors perform all of the pairwise comparisons of

k values,
F Each processor sets the flag for the smaller value to 0.
F Note that several processors may write 0 to the same location, but

the CRCW allows this because they are all writing the same value.
I One processor for each value checks if its flag is still set to 1.

F The winner for the cluster is moved to a specific location;
F The flag for that location is set to 1
F And now we’re ready for subsequent rounds.
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Valiant’s algorithm, step 2

We now have N/3 elements left and still have N processors.
We can make groups of 7 elements, and have 21 processors per

group, which is enough to perform all
(

7
2

)
= 21 pairwise

comparisons in a single step.
Thus, in O(1) time we move the max of each set to a fixed
location. We now have N/21 elements left to consider.
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Visualizing Valiant

max(x(0)...x(20))

N values, N processors

groups of 3 values

max from each group

group of 7 values

(21 parallel comparisons)
max from group of 7

(3 parallel comparisons/group)

Mark Greenstreet Models of Parallel Computation CS 418 – Feb. 6, 2017 17 / 23

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_6
https://en.wikipedia.org/wiki/2017


Valiant’s Algorithm, the remaining steps
On step k , we have N/mk elements left.
On step mk is the “sparsity” of the problem – i.e. the number of
processors per remaining element.
We can make groups of 2mk + 1 elements, and have

mk (2mk + 1) = (2mk+1)((2mk+1)−1)
2

=

(
2mk + 1

2

)
processors per group, which is enough to perform all pairwise
comparisons in a single step.
We now have N/(mk (2mk + 1)) elements to consider.
Therefore, mk+1 = 2m2

k + mk .
I The sparsity is squared at each step.
I It follows that the algorithm requires O(log log N).
I Valiant showed a matching lower bound and extended the results to

show merging is θ(log log N) and sorting is θ(log N) on a CRCW
PRAM.

I See slide 26 to see the details of the first few rounds.
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Valiant’s Algorithm, run-time

The sparsity is roughly squared at each step.
It follows that the algorithm requires O(log log N).
Valiant showed a matching lower bound and extended the results
to show merging is θ(log log N) and sorting is θ(log N) on a
CRCW PRAM.
See slide 27 for the details.
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Take-home message from Valiant’s algorithm

The PRAM model is simple, and elegant, and many clever
algorithms have been designed based on the PRAM model.
It is also physically unrealistic:

I As shown on slide 7, logic gates have bounded fan-in and fan-out.
I Implementing the processor to memory interconnect requires a

logic network of depth Ω(log P).
I Therefore, access time must be Ω(log P).
I Each step of the PRAM must take Ω(log P) physical time.

Valiant’s O(log log N) algorithms takes O(log N log log N) physical
time

I It’s slower than doing a simple reduce.
I And it uses lots of communication – think of all those λ penalties!
I But it’s very clever. ,

Valiant understood this and pointed these issues in his paper.
I But there has still be extensive research on PRAM algorithms.
I It’s an elegant model, what can I say?
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Summary
Simplified CTA reminds us that communication is expensive, but it
doesn’t explicitly charge for bandwidth.
LogP accounts for bandwidth, but doesn’t recognize that all bandwidth is
not the same:

I Communicating with an immediate neighbour is generally much cheaper
than communicating with a distant machine.

I Otherwise stated, the bisection bandwidth for real machines is generally
much less than the per-machine bandwidth times the number of machines.

F We can’t have everyone talk at once at full bandwidth.
F logP uses the bisection bandwidth – this is conservative, but it doesn’t

recognize the advantages of local communcation.
Both are based on a 10-20 year old machine model

I That’s ok, the papers are 18-25 years old.
I Doesn’t account for the heterogeniety of today’s parallel computers:

F multi-core on chip, faster communication between processors on the
same board than across boards, etc.

We’ll use CTA because it’s simple.
I But recognize the limitations of any of these models.

Getting a model of parallel computation that’s as all-purpose as the RAM
is still a work-in-progress.
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Preview
February 8: Parallel Sorting – The Zero-One Principle

Reading: https://en.wikipedia.org/wiki/Sorting_network
February 10: Bitonic Sorting (part 1)

Reading: https://en.wikipedia.org/wiki/Bitonic_sorter
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm

February 13: Family Day – no class
February 15: Bitonic Sorting (part 2)

Homework: HW 3 earlybird (11:59pm), HW 4 goes out.
February 17: Map-Reduce

Homework: HW 3 due (11:59pm).
HW 4 goes out

February 27: TBD
March 1: Midterm
March 3: GPU Overview

Reading The GPU Computing Era
March 6: Intro. to CUDA

Reading Kirk & Hwu Ch. 2
March 8: CUDA Threads, Part 1

Reading Kirk & Hwu Ch. 3
Homework: HW 4 earlybird (11:59pm)

March 8: CUDA Threads, Part 2
Homework: HW4 due (11:59pm).
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Review

Compare and Contrast the main features of the PRAM, CTA, and
LogP models?
How does each model represent computation?
How does each model represent communication?
How might one determine parameter values for the CTA and LogP
models? Describe at a high-level the kinds of experiments you
could run to estimate the parameters. Hint: review the
Jan. 9 lecture.
What does the ‘g’ stand for in “logP”?

Mark Greenstreet Models of Parallel Computation CS 418 – Feb. 6, 2017 23 / 23

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/lecture/01-09/slides.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/February_6
https://en.wikipedia.org/wiki/2017


For further reading
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[Fortune1979] Steven Fortune and James Wyllie,
“Parallelism in Random Access Machines,” Proceeding of the 11th

ACM Symposium on Theory of Computing (STOC’79), pp.
114–118, May 1978.
[Snyder1986] Lawrence Snyder,
“Type architectures, shared memory, and the corollary of modest potential”,
Annual review of computer science, vol. 1, no. 1, pp. 289–317,
1986.
[Culler1993] David Culler, Richard Karp, et al.,
“LogP: towards a realistic model of parallel computation,” ACM
SIGPLAN Notices, vol. 28, no. 7, pp. 1–12, (July 1993).
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EREW, CREW, and CRCW
EREW: Exclusive-Read, Exclusive-Write

I If two processors access the same location on the same step,
F then the machine fails.

CREW: Concurrent-Read, Exclusive-Write
I Multiple machines can read the same location at the same time,

and they all get the same value.
I At most one machine can try to write a particular location on any

given step.
I If one processor writes to a memory location and another tries to

read or write that location on the same step,
F then the machine fails.

CRCW: Concurrent-Read, Concurrent-Write
If two or more machines try to write the same memory word at the same
time, then if they are all writing the same value, that value will be written.
Otherwise (depending on the model),

I the machine fails, or
I one of the writes “wins”, or
I an arbitrary value is written to that address.
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Valiant Details

round values remaining group size processors per group
1 N 2 ∗ 1 + 1 = 3 3 = 3 choose 2
2 N

3 2 ∗ 3 + 1 = 7 3 ∗ 7 = 21 = 7 choose 2
3 1

7
N
3 = N

21 2 ∗ 21 + 1 = 43 21 ∗ 43 = 903 = 43 choose 2
4 1

43
N
21 = N

903 2 ∗ 903 + 1 = 1, 807 903 ∗ 1, 807 = 1, 631, 721 = 1807 choose 2
. . . . . . . . . . . .
k N

mk
2mk + 1 mk (2mk + 1) = (2mk + 1) choose 2

k + 1 1
2mk+1 2mk+1 + 1 mk+1(2mk+1 + 1) = (2mk+1 + 1) choose 2

= N
mk

N
mk (2mk+1)

= N
mk+1

mk is the “sparsity” at round k :
m1 = 1

mk+1 = mk (2mk + 1)

Now note that mk+1 = mk (2mk + 1) > 2m2
k > m2

k .
Thus, log(mk+1) > 2 log(mk ).
For k ≥ 3, mk > 22k−1

.
Therefore, if N ≥ 2, k > log log(N) + 1 ⇒ mk > N.
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Let’s solve the run-time recurrence
For Valiant’s algorithm. Let m0 = 3 denote the sparsity at the first
step.
mk+1 = 2m2

k + mk
I log2 mk+1 = log2(2m2

k + mk )
I 2 log2 mk + 1 < log2 mk+1 < 2 log2 mk + 1 + α/mk ; where
α = log2(e)/2.

I 2k log2 m0 + 2k − 1 < log2 mk < 2k m0 + (5/4)(2k − 1); because
mk ≥ 3, log2(e)/6 = 0.240449 . . . < 1/4.

I (1 + log2 3)2k − 1 < log2 mk < ((5/4) + log2 3)2k − (5/4); because
m0 = 3.

We want to find k such that mk ≥ N. It is sufficient if
I (1 + log2 3)2k − 1 > log2 N
I 2k > (log2 N + 1)/(1 + log2 3)
I k > log2[(log2 N + 1)/(1 + log2 3)]
I For N > 2, (log2 N + 1)/(1 + log2 3) < log2 N.

For N > 2, let k = log2 log2 N. We have shown that mk > N.
I Valiant’s algorithm takes O(log log N) rounds.
I Each round takes constant time on a CRCW PRAM.
I ∴ Valiant’s algorithm takes O(log log N) time on a CRCW PRAM.
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