
Speed-Up

Mark Greenstreet

CpSc 418 – Jan. 30, 2017

Outline:
Measuring Performance
Speed-Up
Amdahl’s Law
The law of modest returns
Superlinear speed-up
Embarrassingly parallel problems

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 1 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


But first, USRA

Summer Undergraduate Research Opportunities

• Natural Sciences and Engineering Research Council (NSERC) 
Undergraduate Student Research Awards (USRAs)
– Same process to apply for Science Undergraduate Research 

Experience (SURE) and Work Learn International Undergraduate 
Research Awards

• See what academic research really looks like

• Many research areas: ...
– Google “ubc cs usra” for full list of projects seeking students

• I have several project proposals:
– Collaborative control of smart wheelchairs for older adults

– Numerical software for demonstrating correctness of robots and 
cyber-physical systems

• 16 weeks, flexible schedule

• You get paid!

• Email potential sponsor ASAP (full applications due by Feb 10)

January 2017 Ian M. Mitchell — UBC Computer Science 1

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 2 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Objectives

Understand key measures of performance
I Time: latency vs. throughput
I Time: wall-clock vs. operation count
I Speed-up: slide 5

Understand common observations about parallel performance
I Amdahl’s law: limitations on parallel performance (and how to

evade them)
I The law of modest returns: high complexity problems are bad, and

worse on a parallel machine.
I Superlinear speed-up: more CPUs⇒ more, fast memory – and

sometimes you win.
I Embarrassingly parallel problems: sometimes you win, without

even trying.

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 3 / 20

slide:measure
slide:time
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Measuring Performance

The main motivation for parallel programming is performance
I Time: make a program run faster.
I Space: allow a program to run with more memory.

To make a program run faster, we need to know how fast it is
running.
There are many possible measures:

I Latency: time from starting a task until it completes.
I Throughput: the rate at which tasks are completed.
I Key observation:

throughput =
1

latency
, sequential programming

throughput ≥ 1
latency

, parallel programming

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 4 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Speed-Up

Simple definition:

speed up =
time(sequential execution)

time(parallel execution)

We can also describe speed-up as how many percent faster:

%faster = (speed up − 1) ∗ 100%

But beware of the spin:
I Is “time” latency or throughput?
I How big is the problem?
I What is the sequential version:

F The parallel code run on one processor?
F The fastest possible sequential implementation?
F Something else?

More practically, how do we measure time?

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 5 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Speed-Up – Example

Let’s say that count 3s of a million items takes 10ms on a single
processor.
If I run count 3s with four processes on a four CPU machine,
and it takes 3.2ms, what is the speed-up?
If I run count 3s with 16 processes on a four CPU machine,
and it takes 1.8ms, what is the speed-up?
If I run count 3s with 128 processes on a 32 CPU machine,
and it takes 0.28ms, what is the speed-up?

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 6 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Time complexity

What is the time complexity of sorting?
I What are you counting?
I Why do you care?

What is the time complexity of matrix multiplication?
I What are you counting?
I Why do you care?

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 7 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Big-O and Wall-Clock Time
In our algorithms classes, we count “operations” because we have some
belief that they have something to do with how long the actual program
will take to execute.

I Or maybe not. Some would argue that we count “operations”
because it allows us to use nifty techniques from discrete math.

I I’ll take the position that the discrete math is nifty because it tells us
something useful about what our software will do.

In our architecture classes, we got the formula:

time =
(#inst. executed) ∗ (cycles/instruction)

clock frequency

The approach in algorithms class of counting comparisons or
multiplications, etc., is based on the idea that everything else is done in
proportion to these operations.
BUT, in parallel programming, we can find that a communication
between processes can take 1000 times longer than a comparison or
multiplication.

I This may not matter if you’re willing to ignore “constant factors.”
I In practice, factors of 1000 are too big to ignore.

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 8 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Amdahl’s Law

Given a sequential program where
I fraction s of the execution time is inherently sequential.
I fraction 1− s of the execution time benefits perfectly from speed-up.

The run-time on P processors is:

Tparallel = Tsequential ∗ (s + 1− s
P )

Consequences:
I Define

speed up =
Tsequential
Tparallel

I Speed-up on P processors is at most 1
s .

I Gene Amdahl argued in 1967 that this limit means that parallel
computers are only useful for a few special applications where s is
very small.

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 9 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Amdahl’s Law

P
0 20 40 60 80 100

sp
ee
d-
up

0

2

4

6

8

10

12

14

16

18
Amdahl's Law: s = 0.05

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 10 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Amdahl’s Law, 49 years later

Amdahl’s law is not a physical law.
Amdahl’s law is mathematical theorem:

I If Tparallel is
(
s + 1−s

P

)
Tsequential

I and speed up = Tsequential/Tparallel ,
I then for 0 < s ≤ 1, speed up ≤ 1

s .
Amdahl’s law is also an economic law:

I Amdahl’s law was formulated when CPUs were expensive.
I Today, CPUs are cheap

F The cost of fabricating eight cores on a die is very little more that the
cost of fabricating one.

F Computer cost is dominated by the rest of the system: memory, disk,
network, monitor, . . .

Amdahl’s law assumes a fixed problem size.

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 11 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Amdahl’s Law, 49 years later

Amdahl’s law is an economic law, not a physical law.
I Amdahl’s law was formulated when CPUs were expensive.
I Today, CPUs are cheap (see previous slide)

Amdahl’s law assumes a fixed problem size
I Many computations have s (sequential fraction) that decreases as

N (problem size) increases.
I Having lots of cheap CPUs available will

F Change our ideas of what computations are easy and which are hard.
F Determine what the “killer-apps” will be in the next ten years.

• Ten years from now, people will just take it for granted that
most new computer applications will be parallel.

I Examples: see next slide

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 12 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Amdahl’s Law, 49 years later

Amdahl’s law is an economic law, not a physical law.
Amdahl’s law assumes a fixed problem size

I Ten years from now, people will just take it for granted that most
new computer applications will be parallel.

I Examples:
F Managing/searching/mining massive data sets.
F Scientific computation.

• Note that most of the computation for animation and render-
ing resembles scientific computation. Computer games ben-
efit tremendously from parallelism.

• Likewise for multimedia computing.

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 13 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Amdahl’s Law, one more try

P
0 200 400 600 800 1000

sp
ee
d-
up

0

100

200

300

400

500

600

700

800

900

1000
Amdahl's Law: s = 0.05

N=10
N=100
N=1000
N=10000

We can have problems where the parallel work grows faster than
the sequential part.
Example: parallel work grows as N3/2 and the sequential part
grows as log P.

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 14 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


The Law of Modest Returns

More bad news. /
Let’s say we have an algorithm with a sequential run-time
T = (12ns)N4.

I If we’re willing to wait for one hour for it to run, what’s the largest
value of N we can use?

I If we have 10000 machines, and perfect speed-up (i.e.
speed up = 10000), now what is the largest value of N we can
use?

I What if the run-time is (5ns)1.2N?
The law of modest returns

I Parallelism offers modest returns, unless the problem is of fairly low
complexity.

I Sometimes, modest returns are good enough: weather forecasting,
climate models.

I Sometimes, problems have huge N and low complexity: data
mining, graphics, machine learning.

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 15 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Super-Linear Speed-up
Sometimes, speed up > P. ,

How does this happen?
I Impossibility “proof”: just simulate the P parallel processors with

one processor, time-sharing P ways.
Memory: a common explanation

I P machines have more main memory (DRAM)
I and more cache memory and registers (total)
I and more I/O bandwidth, . . .

Multi-threading: another common explanation
I The sequential algorithm underutilizes the parallel capabilities of

the CPU.
I A parallel algorithm can make better use.

Algorithmic advantages: once in a while, you win!
I Simulation as described above has overhead.
I If the problem is naturally parallel, the parallel version can be more

efficient.
BUT: be very skeptical of super-linear claims, especially if
speed up � P.
Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 16 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Embarrassingly Parallel Problems

Problems that can be solved by a large number of processors with very
little communication or coordination.

Rendering images for computer-animation: each frame is
independent of all the others.
Brute-force searches for cryptography.
Analyzing large collections of images: astronomy surveys, facial
recognition.
Monte-Carlo simulations: same model, run with different random
values.
Don’t be ashamed if your code is embarrassingly parallel:

I Embarrassingly parallel problems are great: you can get excellent
performance without heroic efforts.

I The only thing to be embarrassed about is if you don’t take
advantage of easy parallelism when it’s available.

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 17 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Lecture Summary

Parallel Performance
Speed-up: slide 5
Limits

I Amdahl’s Law, slide 9.
I Modest gains, slide 15.

Sometimes, we win
I Super-linear speedup, slide 16.
I Embarrassingly Parallel Problems, slide 17.

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 18 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Preview
February 1: Parallel Performance: Overheads

Homework: HW 2 due (11:59pm).
February 3: Parallel Performance: Models

Mini Assignments Mini 4 due (10am)
February 6: Parallel Performance: Wrap Up
February 8: Parallel Sorting – The Zero-One Principle

Homework (Feb. 15): HW 3 earlybird (11:59pm), HW 4 goes out.
February 10: Bitonic Sorting (part 1)
February 15: Family Day – no class
February 13: Bitonic Sorting (part 2)

Homework (Feb. 15): HW 3 earlybird (11:59pm), HW 4 goes out.
February 17: Map-Reduce

Homework: HW 3 due (11:59pm).
February 27: TBD
March 1: Midterm

Reading from “Programming Massively Parallel Computers” (D.B.
Kirk & W.-M. Hwu) start right after the midterm. Make sure you
have a copy.
You can use either the 2nd or 3rd edition.

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 19 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017


Review Questions

What is speed-up? Give an intuitive, English answer and a
mathematical formula.
Why can it be difficult to determine the sequential time for a
program when measuring speed-up?
What is Amdahl’s law? Give a mathematical formula. Why is
Amdahl’s law a concern when developing parallel applications?
Why in many cases is it not a show-stopper?
Is parallelism an effective solution to problems with high big-O
complexity? Why or why not?
What is super-linear speed-up? Describe two causes.
What is an embarrassingly parallel problem. Give an example.

Mark Greenstreet Speed-Up CS 418 – Jan. 30, 2017 20 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_30
https://en.wikipedia.org/wiki/2017

