
caller
<185>

worker 1
<251>

worker 1
<251>

worker 1
<251>

[1, 1, 1, 0]

worker 2
<252>

worker 3
<253>

worker 4
<254>

worker 3
<253>

[0, 1, 1, 1] [1, 1, 1, 1] [0, 1, 0, 1]

leaf() ->
{ 3, { 1, 3, 4 }, 0, ok }

leaf() ->
{ 0, { 2, 3, 4 }, 3, ok }

leaf() ->
{ 4, { 1, 4, 4 }, 4, ok }

leaf() ->
{ 0, { 2, 1, 4 }, 1, ok }

combine() ->
{ 3, { 1, 3, 8 }, 3, ok }

combine() ->
{ 4, { 1, 4, 8 }, 1, ok }

combine() ->
{ 3, { 6, 7, 16 }, 1, ok }

root_scan() ->
{ {6, 7 }, { 0, { 1, 0, 0 }, 0, 6 } }

caller
<185>

{ 0, { 1, 0, 0 }, 0, 6 } passed back
to worker 1 as left argument

(see next page for downward pass)

{ 6, 7 } returned to
caller of wtree:scan()

Upward pass (equivalent to reduce)
All functions are executed by
process at tail of arrow

In calls to combine()
left comes up from left child

right comes up from right child
result passed up to parent

caller
<185>

worker 1
<251>

worker 1
<251>

worker 1
<251>

[1, 1, 1, 0]
leaf2() -> [1, 1, 1, 0]

worker 2
<252>

worker 3
<253>

worker 4
<254>

worker 3
<253>

[0, 1, 1, 1]
leaf2() -> [0, ok, ok, ok]

[1, 1, 1, 1]
leaf2() -> [ok, ok, ok, ok]

[0, 1, 0, 1]
leaf2() -> [0, 1, 0, 1]

combine() ->
{ 3, { 1, 3, 8 }, 3, 6 }

{ 0, { 1, 0, 0 }, 0, 6 }

Downward pass
All functions are executed by
process at tail of arrow

{ 0, { 1, 0, 0 }, 0, 6 }

{ 0, { 1, 0, 0 }, 0, 6 } { 3, { 1, 3, 8 }, 3, 6 }

remember { 3, { 1, 3, 4 }, 0, ok }
from left child during upward pass

remember { 3, { 1, 3, 8 }, 3, ok }
from left child during upward pass

remember {4, { 1, 4, 4 }, 4, ok }
from left child during upward pass

combine() ->
{ 3, { 1, 3, 4 }, 0, 6 }

combine() ->
{ 3, { 6, 7, 12 }, 7, 6 }

In calls to combine()
left comes down from parent

right is remembered from left child during upward pass
result passed down to right child

