/

Upward pass (equivalent to reduce)

~N {6, 7}returned to
All functions are executed by caller root_scan() -> { caller J/ caller of wtree:scan()
process at tail of arrow <185> {{6,7},{0,{1,0,0},0,6}} <185>
combine() ->
{3,{6,7,16}, 1,0k} In calls to combine() \
worker 1 left comes up from left child {0,{1,0,0},0,6}passed back
<251> right comes up from right child to worker 1 as left argument
4‘\ result passed up to parent (see next page for downward pass)
combine() -> combine() -> \
{3,{1,3,8}, 3,0k} {4,{1,4,8}, 1,0k}

I \
worker 1 worker 3
<251> <253>

leaf() -> \ leaf() -> leaf() —>\ leaf() ->

{3,{1,3,4},0,0k} {0,{2,3,4}, 3,0k} {4,{1,4,4}, 4,0k} {0,{2,1,41}, 1,0k}
| T~ | T~
worker 1 worker 2 worker 3 worker 4
<251> <252> <253> <254>

[1,1,1,0] [0,1,1,1] [1,1,1,1] [0,1,0,1]

Downward pass
All functions are executed by Lcaller }

process at tail of arrow <185>

worker 1
<251>

{0,{1,0,0},0,6} combine() ->
{3,{1,3,8},3,6}

{0,{1,0,0},0,6} —

In calls to combine()
remember {3,{1,3,8},3, ok} left comes down from parent
from left child during upward pass right is remembered from left child during upward pass

result passed down to right child

\

worker 1 | remember{3,{1,3,4},0, 0k} worker 3 | remember{4,{1,4,4}, 4,0k}
<251> [from left child during upward pass <253> from left child during upward pass

|~

{0,{1,0,0},0,6}

combine() -> combine() ->
{3,{1,3,4},0,6) {3'{1'38}36} (3,{6,7,12},7,6)

worker 1 worker 2 worker 3 worker 4
<251> <252> <253> <254>
[1,1,1,0] [0,1,1,1] [1,1,1,1] [0,1,0,1]
leaf2() ->[1,1,1,0] leaf2() -> [O, ok, ok, ok] leaf2() -> [ok, ok, ok, ok] leaf2() ->[0,1,0,1]

