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Objectives

Review classical, sequential architectures
I a simple microcoded, machine
I a pipelined, one-instruction per clock cycle machine

Pipelining is parallel execution
I the machine is supposed to appear (nearly) sequential
I introduce the ideas of hazards and dependencies.
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Microcoded machines
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A simple, microcoded machine

The microcode (µcode) ROM specifies the sequence of
operations necessary to carry out an instruction.
For simplicity, I’m assuming that the op-code bits of the instruction
form the most significant bits of the µcode ROM address, and that
the value of the micro-PC (µPC) form the lower half of the
address.
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Microcode: summary
Separates hardware from instruction set.
I Different hardware can run the same software.
I Enabled IBM to sell machines with a wide range of

performance that were all compatible
2 I.e. IBM built an empire and made a fortune on the IBM

360 and its successors.
2 Intel has done the same with the x86.

But, as implemented on slide 3, it’s very sequential.
while(true) {

fetch an instruction;
perform the instruction

}

Instruction fetch is “overhead”
I Motivates coming up with complicated instructions that

perform lots of operations per instruction fetch.
I But these are hard for compilers to use.
I Can we do better?
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Pipelined instruction execution
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Successive instructions in each stage
When instruction i in ifetch, instruction i-1 in decode, . . .
Allows throughput of one instruction per cycle.
Favors simple instructions that execute on a single pass through
the pipeline.
I This is known as RISC: “Reduced Instruction Set Computer”
I A modern x86 is CISC on the outside, but RISC on the inside.
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What about Dependencies?

Multiple-instructions are in the pipeline at the same time.
An instruction starts before all of its predecessors have completed.
Data hazards occur if
I an instruction can read a different value than would have

been read with a sequential execution of instructions,
I or if a register or memory location is left holding a different

value than it would have had in a sequential execution.
Control hazards occurs if
I an instruction is executed that would not have been executed

in a sequential execution.
I This is because the instruction “depends” on a jump or

branch that hasn’t finished in time.
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Handling Hazards

Bypass: If an instruction has a result that a later instruction needs,
the earlier instruction can provide that result directly without
waiting to go through the register file.
Move common operations early:
I Decide branches in decode stage
I ALU operations in the stage after decode
I Memory reads take longer, but they happen less often.

Let the compiler deal with it
If nothing else helps, stall.
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Break for Live Coding
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Back to Architecture

the microcoded machine takes 5+ clock-cycles per instruction.
the RISC machine takes 1 clock-cycle per instruction – in the best
case:
I There can be stalls due to cache misses,
I unfilled delay slots, or
I multi-cycle operations.

Can we break the one-cycle-per instruction barrier?

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 9 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


The Memory Bottleneck

A CPU core can execute roughly one instruction per clock-cycle.
I With a 3GHz clock, that’s roughly 0.3ns per instruction.

Main memory accesses take 60-200ns (or longer)
I That’s 200-600 instructions per main memory access.

Why?
I CPUs designed for speed.
I Memory designed for capacity:

2 fast memories are small
2 large memories are slow
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Superscalar Processors
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Superscalar Execution
Fetch several, W , instructions each cycle.
Decode them in parallel, and send them to issue queues for the
appropriate functional unit.
But what about dependencies?
I We need to make sure that data and control dependencies

are properly observed.
I Code should execute on a superscalar as if it were executing

on sequential, one-instruction-at-a-time machine.
I Data dependencies can be handled by “register renaming” –

this uses register indices to dynamically create the
dependency graph as the program runs.

I Control dependencies can be handled by “branch
speculation” – guess the branch outcome, and rollback if
wrong.

The opportunity to execute instructions in parallel is called
Instruction Level Parallelism, ILP.
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What superscalars are good at
Scientific computing:
I often successive loop iterations are independent
I the superscalar pipelines the loop
I Perform memory reads for loop i, while doing multiplications

for loop i-2, while doing additions for loop i-4, while storing the
results for loop i-5.

Commercial computing (databases, webservers, . . . )
I often have large data sets and high cache miss rates.
I the superscalar can find executable instructions after a cache

miss.
I if it encounters more misses, the CPU benefits from

pipelined memory accesses.
Burning lots of power
I many operations in a superscalar require hardware that

grows quadratically with W .
I basically, all instructions in a batch of W have to compare

there register indices with all of the other ones.
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Superscalar Reality

Most general purpose CPUs (x86, Arm, Power, SPARC) are
superscalar.
Register renaming works very well:
Branch prediction is also very good, often > 90% accuracy.
I But, data dependent branches can cause very poor

performance.
Superscalar designs make multi-threading possible
I The features for executing multiple instruction in parallel work

well for mixing instructions from several threads or processes
– this is called “multithreading” (or “hyperthreading”, if you’re
from Intel).

I In practice, superscalars are often better at multithreading
than they are at extracting ILP from a sequential program.
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Preview

January 25: Shared-Memory Machines
Reading: Pacheco, Chapter 2, Section 2.3

January 27: Distributed-Memory Machines
Reading: Pacheco, Chapter 2, Sections 2.4 and 2.5.
Mini Assignments Mini 4 goes out.

January 30: Parallel Performance: Speed-up
Reading: Pacheco, Chapter 2, Section 2.6.
Homework: HW 2 earlybird (11:59pm). HW 3 goes out.

February 1: Parallel Performance: Overheads
Homework: HW 2 due (11:59pm).

February 3: Parallel Performance: Models
Mini Assignments Mini 3 due (10am)

February 6: Parallel Performance: Wrap Up
January 8–February 15: Parallel Sorting

Homework (Feb. 15): HW 3 earlybird (11:59pm), HW 4 goes out.
February 17: Map-Reduce

Homework: HW 3 due (11:59pm).
February 27: TBD
March 1: Midterm
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Review

How does a pipelined architecture execute instruction in parallel?
What are hazards?
What are dependencies?
What is multithreading.
For further reading on RISC:
“Instruction Sets and Beyond: Computers, Complexity, and Controversy”
R.P. Colwell, et al., IEEE Computer, vol. 18, no. 3,
I You can download the paper for free if your machine is on the

UBC network.
I If you are off-campus, you can use the library’s proxy.
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