
Computer Architecture Review

Mark Greenstreet

CpSc 418 – Jan. 23, 2017

A microcoded machine
A pipelined machine: RISC
Let’s write some code
Superscalars and the memory bottleneck

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 1 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


Objectives

Review classical, sequential architectures
I a simple microcoded, machine
I a pipelined, one-instruction per clock cycle machine

Pipelining is parallel execution
I the machine is supposed to appear (nearly) sequential
I introduce the ideas of hazards and dependencies.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 2 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


Microcoded machines

PC

P
C

µ

µ

ROM
code

REG[0:7] ALU

MEM

addr

data

IR
E

G

Signals

Control

bus−A

bus−B

A simple, microcoded machine

The microcode (µcode) ROM specifies the sequence of
operations necessary to carry out an instruction.
For simplicity, I’m assuming that the op-code bits of the instruction
form the most significant bits of the µcode ROM address, and that
the value of the micro-PC (µPC) form the lower half of the
address.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 3 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


Microcode: summary
Separates hardware from instruction set.
I Different hardware can run the same software.
I Enabled IBM to sell machines with a wide range of

performance that were all compatible
2 I.e. IBM built an empire and made a fortune on the IBM

360 and its successors.
2 Intel has done the same with the x86.

But, as implemented on slide 3, it’s very sequential.
while(true) {

fetch an instruction;
perform the instruction

}

Instruction fetch is “overhead”
I Motivates coming up with complicated instructions that

perform lots of operations per instruction fetch.
I But these are hard for compilers to use.
I Can we do better?

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 4 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


Pipelined instruction execution

Registers

Instr.
Cache

Data
Cache

data data data

Data

ALU Write−

back

inst.

fetch

inst

ctrl ctrl ctrl ctrl

datadata

op1

op2

addr addr

addr

rs2

Address

decode MEM

MEM A Pipelined (RISC) CPU

rdst

jr

rs1

Successive instructions in each stage
When instruction i in ifetch, instruction i-1 in decode, . . .
Allows throughput of one instruction per cycle.
Favors simple instructions that execute on a single pass through
the pipeline.
I This is known as RISC: “Reduced Instruction Set Computer”
I A modern x86 is CISC on the outside, but RISC on the inside.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 5 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


What about Dependencies?

Multiple-instructions are in the pipeline at the same time.
An instruction starts before all of its predecessors have completed.
Data hazards occur if
I an instruction can read a different value than would have

been read with a sequential execution of instructions,
I or if a register or memory location is left holding a different

value than it would have had in a sequential execution.
Control hazards occurs if
I an instruction is executed that would not have been executed

in a sequential execution.
I This is because the instruction “depends” on a jump or

branch that hasn’t finished in time.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 6 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


Handling Hazards

Bypass: If an instruction has a result that a later instruction needs,
the earlier instruction can provide that result directly without
waiting to go through the register file.
Move common operations early:
I Decide branches in decode stage
I ALU operations in the stage after decode
I Memory reads take longer, but they happen less often.

Let the compiler deal with it
If nothing else helps, stall.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 7 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


Break for Live Coding

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 8 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


Back to Architecture

the microcoded machine takes 5+ clock-cycles per instruction.
the RISC machine takes 1 clock-cycle per instruction – in the best
case:
I There can be stalls due to cache misses,
I unfilled delay slots, or
I multi-cycle operations.

Can we break the one-cycle-per instruction barrier?

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 9 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


The Memory Bottleneck

A CPU core can execute roughly one instruction per clock-cycle.
I With a 3GHz clock, that’s roughly 0.3ns per instruction.

Main memory accesses take 60-200ns (or longer)
I That’s 200-600 instructions per main memory access.

Why?
I CPUs designed for speed.
I Memory designed for capacity:

2 fast memories are small
2 large memories are slow

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 10 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


Superscalar Processors

reorder

Float.−Point

MEM

reg.
map

status

IALU1

IALU2

LS

A Superscalar CPU

inst.

fetch

I$

decode

rename
&

Registers
Integer

D$

FP2

FP1

Issue Queues

buffer

Registers

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 11 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


Superscalar Execution
Fetch several, W , instructions each cycle.
Decode them in parallel, and send them to issue queues for the
appropriate functional unit.
But what about dependencies?
I We need to make sure that data and control dependencies

are properly observed.
I Code should execute on a superscalar as if it were executing

on sequential, one-instruction-at-a-time machine.
I Data dependencies can be handled by “register renaming” –

this uses register indices to dynamically create the
dependency graph as the program runs.

I Control dependencies can be handled by “branch
speculation” – guess the branch outcome, and rollback if
wrong.

The opportunity to execute instructions in parallel is called
Instruction Level Parallelism, ILP.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 12 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


What superscalars are good at
Scientific computing:
I often successive loop iterations are independent
I the superscalar pipelines the loop
I Perform memory reads for loop i, while doing multiplications

for loop i-2, while doing additions for loop i-4, while storing the
results for loop i-5.

Commercial computing (databases, webservers, . . . )
I often have large data sets and high cache miss rates.
I the superscalar can find executable instructions after a cache

miss.
I if it encounters more misses, the CPU benefits from

pipelined memory accesses.
Burning lots of power
I many operations in a superscalar require hardware that

grows quadratically with W .
I basically, all instructions in a batch of W have to compare

there register indices with all of the other ones.
Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 13 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


Superscalar Reality

Most general purpose CPUs (x86, Arm, Power, SPARC) are
superscalar.
Register renaming works very well:
Branch prediction is also very good, often > 90% accuracy.
I But, data dependent branches can cause very poor

performance.
Superscalar designs make multi-threading possible
I The features for executing multiple instruction in parallel work

well for mixing instructions from several threads or processes
– this is called “multithreading” (or “hyperthreading”, if you’re
from Intel).

I In practice, superscalars are often better at multithreading
than they are at extracting ILP from a sequential program.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 14 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


Preview

January 25: Shared-Memory Machines
Reading: Pacheco, Chapter 2, Section 2.3

January 27: Distributed-Memory Machines
Reading: Pacheco, Chapter 2, Sections 2.4 and 2.5.
Mini Assignments Mini 4 goes out.

January 30: Parallel Performance: Speed-up
Reading: Pacheco, Chapter 2, Section 2.6.
Homework: HW 2 earlybird (11:59pm). HW 3 goes out.

February 1: Parallel Performance: Overheads
Homework: HW 2 due (11:59pm).

February 3: Parallel Performance: Models
Mini Assignments Mini 3 due (10am)

February 6: Parallel Performance: Wrap Up
January 8–February 15: Parallel Sorting

Homework (Feb. 15): HW 3 earlybird (11:59pm), HW 4 goes out.
February 17: Map-Reduce

Homework: HW 3 due (11:59pm).
February 27: TBD
March 1: Midterm

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 15 / 16

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22


Review

How does a pipelined architecture execute instruction in parallel?
What are hazards?
What are dependencies?
What is multithreading.
For further reading on RISC:
“Instruction Sets and Beyond: Computers, Complexity, and Controversy”
R.P. Colwell, et al., IEEE Computer, vol. 18, no. 3,
I You can download the paper for free if your machine is on the

UBC network.
I If you are off-campus, you can use the library’s proxy.

Mark Greenstreet Computer Architecture Review CS 418 – Jan. 23, 16 / 16

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1663000&tag=1
http://services.library.ubc.ca/off-campus-access/connect-from-home/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_22

