
Scan

Mark Greenstreet

CpSc 418 – Jan. 20, 2016

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 1 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Objectives

Prefix sum
I Spawning processes.
I Sending and receiving messages.

The source code for the examples in this lecture is available here:
procs.erl.

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 2 / 15

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-11/src/procs.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Prefix Sum

Scan is similar to reduce, but every process calculates its
cumulative total.
Example:

% prefix sum: compute prefix sum.
prefix sum(L) when is list(L) -> prefix sum tr(L, 0).
prefix sum tr([], Acc) -> [];
prefix sum tr([H | T], Acc) ->

MySum = H+Acc,
[MySum | prefix sum tr(T, MySum)].

Let’s try it:
1> examples:prefix sum([1, 13, 2, -5, 17, 0, 33]).
[1,14,16,11,28,28,61]

How can we do this in parallel?

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 3 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Parallel Prefix Sum

[14, 15][6, −168, 7]

[1, 2, 3][1, 3, 8]
[−5, 11, 2]

[17, 0, −3]
[100, −8, 12]

[4, 19, 1]

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 4 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Parallel Prefix Sum

42

35

−96

[1, 3, 8]
[−5, 11, 2]

[17, 0, −3]
[100, −8, 12]

[4, 19, 1]

[6, −168, 7]

[1, 2, 3]
[14, 15]

12 14
8 104

20 118

138

24 −155

−131

6 29

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 4 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Parallel Prefix Sum

0138

42

138

[1, 3, 8]
[−5, 11, 2]

[17, 0, −3]
[100, −8, 12]

[4, 19, 1]

[6, −168, 7]

[1, 2, 3]
[14, 15]

12 14
8 104

20 118

24 −155

−131

6 29

35

−96

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 4 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Parallel Prefix Sum

[142,161,162]

138

20

12 14

−131

6

[−5, 11, 2] [100, −8, 12] [14, 15][6, −168, 7]
[27, 42]

24

[17, 0, −3] [4, 19, 1] [1, 2, 3]

104 29

−96

42

138
0

0

0
8

11812

20

34
−155

138
7

13

138
162

7

[1, 3, 8]
[37, 37, 34][1, 4, 12]

[7, 18, 20] [134, 126, 138]

162 35

[168, 0, 7]

[8, 10, 13]

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 4 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

The Scan Pattern

It’s a parallel version of mapfold, e.g. lists:mapfoldl and
lists:mapfoldr.
wtree:scan(Leaf1, Leaf2, Combine, Acc0)

I Leaf1(ProcState) -> Value
Each worker process computes its Value based on its ProcState.

I Combine(Left, Right) -> Value
Combine values from sub-trees.

I Leaf2(ProcState, AccIn) -> ProcState
Each worker updates its state using the AccIn value – i.e. the
accumulated value of everything to the worker’s “left”.

I Acc0: The value to use for AccIn for the leftmost nodes in the tree.

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 5 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Scan example: prefix sum

prefix sum par(W, Key1, Key2) ->
wtree:scan(W,

fun(ProcState) -> % Leaf1
lists:sum(wtree:get(ProcState, Key1)) end,

fun(ProcState, AccIn) -> % Leaf2
wtree:put(ProcState, Key2,

prefix sum(wtree:get(ProcState, Key1), AccIn)
) end,

fun(Left, Right) -> % Combine
Left + Right end,

0 % Acc0
).

prefix sum(L, Acc0) ->
element(1,

lists:mapfoldl(fun(X, Y) -> Sum = X+Y, {Sum,Sum} end,
Acc0, L)).

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 6 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Prefix Sum Using Scan, example (part 1 of 4)
Consider the example from slide 4.

I We’ll assume that the original lists for each processes are
associated with the key raw data.

I We’ll store the cummulative sum using the key cooked data.
Leaf1: each worker computes the sum of the elements in its list:

I Worker 0:
Leaf1(ProcState) ->

lists:sum(wtree:get(ProcState, raw data)) ->
lists:sum([1,3,8]) ->

12.
I Worker 1:

Leaf1(ProcState) -> lists:sum([-5,11,2]) -> 8.
I Worker 2:

Leaf1(ProcState) -> lists:sum([17,0,-3]) -> 14.

I Workers 3–6: . . .
I Worker 7:

Leaf1(ProcState) -> lists:sum([14,15]) -> 29.

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 7 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Prefix Sum Using Scan, example (part 2 of 4)

Combine (upward, first round):
I Worker 0: Combine(12, 8) -> 20.
I Worker 2: Combine(14, 104) -> 118.
I Worker 4: Combine(24, -155) -> -131.
I Worker 6: Combine(6, 29) -> 35.

Combine (upward, second round):
I Worker 0: Combine(20, 118) -> 138.
I Worker 4: Combine(-131, 35) -> -96.

Combine (upward, final round):
I Worker 0: Combine(138, -96) -> 42.
I This value is returned to the caller of wtree:scan.

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 8 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Prefix Sum Using Scan, example (part 3 of 4)
Combine (downward)
The root sends AccIn, 0 to the left subtree.
Each worker that did a combine remembers the arguments from the
upward combines, and uses them in the downward sweep. In the code,
each upward step is a recursive function call, and each downward step
is a return.
Combine (downward, first round)

I Worker 0: Combine(0, 138) -> 138.
I The 0 is AccIn from the root.
I The 138 is the stored value from the left subtree.
I Worker 0 sends this result to its right subtree, worker 4.

Combine (downward, second round)
I Worker 0: Combine(0, 20) -> 20. Send to worker 2.
I Worker 4: Combine(138, -131) -> 7. Send to worker 6.

Combine (downward, third round)
I Worker 0: Combine(0, 12) -> 12. Send to worker 1.
I Worker 2: Combine(20, 14) -> 34. Send to worker 3.
I Worker 4: Combine(138, 24) -> 162. Send to worker 5.
I Worker 6: Combine(7, 6) -> 13. Send to worker 7.

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 9 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Prefix Sum Using Scan, example (part 4 of 4)

Leaf2 (update worker state)
I Worker 0:

Leaf2(ProcState, 0) ->
wtree:put(ProcState, Key2,

prefix sum(wtree:get(ProcState, Key1), 0)) ->
wtree:put(ProcState, Key2,

prefix sum([1, 3, 8], 0)) ->
wtree:put(ProcState, Key2, [1, 4, 12]).

I Worker 1:
Leaf2(ProcState, 0) ->

wtree:put(ProcState, Key2,
prefix sum(wtree:get(ProcState, Key1), 0)) ->

wtree:put(ProcState, Key2,
prefix sum([-5, 11, 2], 12)) ->

wtree:put(ProcState, Key2, [7, 18, 20]).

I Workers 2–7: . . .

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 10 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Let’s Try It

2> W = wtree:create(8).
[<0.65.0>,<0.66.0>,<0.67.0>,<0.68.0>
<0.69.0>,<0.70.0>,<0.71.0>,<0.72.0>]
3> workers:update(W, raw data,
[[1,3,8], [-5,11,2], [17,0,-3], [100,-8,12],

[4,19,1], [6,-168,7], [1,2,3], [14,15]]).
ok
4> examples:prefix sum par(W, raw data, cooked data). 42
5> workers:retrieve(W, cooked data).
[[1,4,12], [7,18,20], "%%\"", [134,126,138],
[142,161,162], [168,0,7], "\b\n\r", "\e*"] 6> $37

Likewise, $" == 34, $=
¯
= 8, $\n == 10, $\r == 13, $\e ==

27, and $* == 42.
All is well.

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 11 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

More Examples of scan
Account balance with interest:

I Input: a list of transactions, where each transaction can be a
deposit (add an amount to the balance), a withdrawal (subtract an
amount from the balance), or interest (multiply the balance by an
amount). For example:

[{deposit, 100.00}, {withdraw, 5.43}, {withdraw, 27.75}, {interest, 0.000543}, ...]
I Output: the account balance after each transaction. For example, if

we assume a starting balance of $1000.00 in the previous example,
we get

[1100.00, 1094.57, 1066.82, 1067.40, ...]

Delete 3s
I Given a list that is distributed across NProc processes, delete all

3s, and rebalance the list so each process has roughly the same
length sublisth.

I Solution (sketch):
F Using scan, each process determines how many 3s preceed its

segment, the total list length preceeding it, and the total list length
after deleting 3s.

F Each process deletes its 3s and send portions of its lists and/or
receives list portions to rebalance.

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 12 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

More2 Examples of scan
Carry-Lookahead Addition:

I Given two large integers as a list of bits (or machine words),
compute their sum.

F Note that the “pencil-and-paper” approach works from the least
significant bit (or digit, or machine word) and works sequentially to the
most-significant bit. This takes O(N) time where N is the number of
bits in the work.

I Carries can be computed using scan.
F This allows a parallel implementation that adds two integers in

O(log N) time.
F This is how the hardware in your CPU does addition – the adder

takes O(log N) gate delays to add two, machine words, where N is
the number of bits in a word.

See Principles of Parallel Programming, pp. 119f.
See homework 2 (later today, I hope).

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 13 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Preview
January 23: Architecture Review

Reading: Pacheco, Chapter 2, Sections 2.1 and 2.2.
January 25: Shared-Memory Machines

Reading: Pacheco, Chapter 2, Section 2.3
January 27: Distributed-Memory Machines

Reading: Pacheco, Chapter 2, Sections 2.4 and 2.5.
Mini Assignments Mini 4 goes out.

January 30: Parallel Performance: Speed-up
Reading: Pacheco, Chapter 2, Section 2.6.
Homework: HW 2 earlybird (11:59pm). HW 3 goes out.

February 1: Parallel Performance: Overheads
Homework: HW 2 due (11:59pm).

February 3: Parallel Performance: Models
Mini Assignments Mini 3 due (10am)

February 6: Parallel Performance: Wrap Up
January 8–February 15: Parallel Sorting

Homework (Feb. 15): HW 3 earlybird (11:59pm), HW 4 goes out.
February 17: Map-Reduce

Homework: HW 3 due (11:59pm).
February 27: TBD
March 1: Midterm

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 14 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

Review Questions
What is scan? Give an example.
Compare scan with lists:mapfoldl?
What property must an operator have to be amenable use with scan?
What are the components of a generalized scan?
As an example, what functions do you need to define to use
wtree:scan?
Consider the following variations on the bank account problem:

I Add a transaction {reset, Balance}, where Balance is a number. The
account balance is set to this amount. For example, this can be used to
open an account with an initial balance. We’ll also assume that a reset
can be done at any point in a sequence of transactions.

I Change interest computations so that the bank charges a daily interest of
X% for negative balances, neither charges nor pays interest for positive
balances less than $1000, and pays a daily interest of Y% for positive
balances greater than $1000.

I For each of these:
F Can the account balance still be computed using scan?
F If yes, explain how to do. If no, explain why it’s not possible.

Mark Greenstreet Scan CS 418 – Jan. 20, 2016 15 / 15

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_20
https://en.wikipedia.org/wiki/2016

