
Scan

Mark Greenstreet

CpSc 418 – Jan. 13, 2017

Outline:
Reduce Redux

I The basic algorithm.
I Performance model.
I Implementation considerations.

Scan
I Understand how reduce generalizes to a method that produces all

N values for a “cumulative” operation in O(log N) time.
A few implementation notes

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet and are
made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 1 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Reduce Redux

17

+ + + + + + +

+

+

+

+

+

+

+

−18 100

8272

P7P1

40 32

154

[1,2,3] [−8,42] [5,12] [4,5,6] [7,−25] [] [1,1,1,1] [96]

6 34

+

15 −18 0 4 96

P0 P2 P3 P4 P5 P6

of numbers, compute the sum of all the numbers

in the combined array.

Given P processes that each hold part of an array
Problem statement:

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 2 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Reduce Redux

34

+ + + + + + +

+

+

+

+

+

+

+

−18 100

8272

P1

40 32

154

[1,2,3] [−8,42] [5,12] [4,5,6] [7,−25] [] [1,1,1,1] [96]

6

+

17 15 −18 0 4 96

P0 P2 P3 P4 P5 P6 P7

Accumulate step:
Each process computes the total of the elments in

its local part of the array.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 2 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Reduce Redux

0

+ + + + + +

+

+

+

+

72

+

+

+

+

32

154

−18 100

82

[1,2,3] [−8,42] [5,12] [4,5,6] [7,−25] [] [1,1,1,1] [96]

6 34 17 15 −18

+

4 96

P0 P2 P3 P4 P5 P6 P7P1

40

The combiners compute the sums of the values from

Combine step:

adjacent pairs of processes.

Each process sends its result to a coombiner process.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 2 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Reduce Redux

82

+ + + + + +

+

+

+

+

72

+

+

+

+

−18 100

+

[1,2,3] [−8,42] [5,12] [4,5,6] [7,−25] [] [1,1,1,1] [96]

6 34 17 15 −18 0 4 96

P0 P2 P3 P4 P5 P6 P7P1

40 32

154Continue up the tree

to get final total.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 2 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Reduce Notes

For simplicity, I drew the tree as if we used separate processes for
accumulating the local arrays and doing the combining.

I In practice, we use the same processes for both accumulating and
combining.

I Note that 1/2 of the processes are active in the first level of combine;
1/4 of the processes are active in the second level; and so on.

Simple time model:

T ∈ O
(

N
P

+ λ log P
)

where λ is big – i.e. the communication time.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 3 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Scan Problem Statement

Given an array, A, with N elements.
I Let B = scan+(A):

Bi =
i∑

k=0

Ak

I Example:

A = [1,2,3,−8,42,5,12,4,5,6,7,−25,1,1,1,1,96]
B = [1,3,6,−2,40,45,57,61,66,72,79,54,55,56,57,58,154]

Is there an efficient parallel algorithm for computing scan+(A)?
I I wrote scan+ because our solution works for any associative

operator.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 4 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Scan Example: Monthly Bank Statement

Assumptions:
I You make lots of transactions; so, the bank needs to use a parallel

algorithm just for your account.
I Months have 32 days – the power-of-two version of the algorithm is

simpler. It generalizes to any number of processors.
I Each processes has the transaction data for one day.

Using parallel scan:
I Each process computes the total of the transactions for its day.
I Using parallel scan, we determine the balance at the beginning of

each day for each process.
I The process can use its start-of-day balance, and compute the

balance after each transaction for that day.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 5 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Brute force Scan

reduce

1
A

2
A

3
A

4
A

5
A

6
A

7
A

0

B
7

A

Use a reduce tree to compute B7.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 6 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Brute force Scan

A
2

A
3

A
4

A
5

A
6

A
7

A
0

A

6
B

7
B

1

Use a reduce tree to compute B7.
Use another reduce tree to compute B6.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 6 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Brute force Scan

7
A

0

B
6

B
7

B
0

B
1

B
2

B
3

B
4

B
5

A
1

A
2

A
3

A
4

A
5

A
6

A

Use a reduce tree to compute B7.
Use another reduce tree to compute B6.
Use 6 more reduce trees to compute B5...0

It works. It’s O(log P) time! But it’s not very efficient.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 6 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Reuse trees

A13 A14 A15A12
A0 A1 A2 A3 A4 A5 A6 A7 A9 A10A8 A11

B10

Key idea: we don’t need the trees to be balanced.
We just want them to be O(log P) in height.
If we need a tree for 2k nodes, we’ll make a balanced tree.
Otherwise:

I Make the largest balanced tree we can on the left.
I Repeat this process for what’s left on the right.

Notice that while computing B10, we produced many other of the
Bs as intermediate results.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 7 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Reuse trees

A13 A14 A15A12
A0 A1 A2 A3 A4 A5 A6 A7 A9 A10A8 A11

B10B0 B1 B3 B7 B9

Key idea: we don’t need the trees to be balanced.
We just want them to be O(log P) in height.
If we need a tree for 2k nodes, we’ll make a balanced tree.
Otherwise:

I Make the largest balanced tree we can on the left.
I Repeat this process for what’s left on the right.

Notice that while computing B10, we produced many other of the
Bs as intermediate results.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 7 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Scan

15

A−1

A
−1

A
−1

A
−1

B0 B1 B2 B3 B4 B10 B11 B12 B13B5 B6 B7 B8 B9 B14B
−1

A14A0 A2 A4 A6 A8 A10 A12

A8A6A4A2 A10

A12

A14

A0

Σ12:13

3 A11 A13A5 A7 A9

Σ4:5 Σ8:11

Σ12:13

A

Σ0:1

Σ0:3

Σ0:7

Σ0:15

Σ2:3 Σ4:5

Σ4:7

Σ6:7 Σ8:9

Σ8:11

Σ−1:7

Σ12:15

Σ10:11 Σ14:15

Σ8:15

Σ−1:3

Σ−1:1 Σ−1:3

Σ−1:7

Σ−1:7

Σ−1:11

Σ−1:11 Σ−1:13

A1 A

See the next slide for an explanation of the notation, etc.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 8 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Scan: explained
Σ i:k Σ i:j Σ i:k

Σ j+1:k Σ i:j

combine,

i:j Σ j+1:k

Σ i:j

is the terminal placement, to make the big diagram less cluttered.

Σ

combine,
root−to−leaves.leaves to root.

The green and magenta boxes are both "combine" units. The only difference

+ +

Notation
I A−1 is initializer for the sum.
I A0, A1, . . . A15 is the initial array.
I B−1, B1, . . . B15 is the result of the scan.

Bi =
i∑

k=−1

Ak , Include the initializer A−1

I Σi : j is shorthand for
j∑

k=i

Ak

Each process needs to compute its local part of the scan at the
end, starting from the value it receives from the tree.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 9 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

A few implementation notes

On slide 3 I pointed out that for efficiency, it is better to use the
same processes for the leaves and the combine.

% reduce:
treeLevels = ceil(log2(NProcs0);
tally = localAccumulate(. . .);
for(k = 0; k < treeLevels; k++) {

if((myPid & (1 << k)) != 0) {
send(myPid - (1 << k), myPid, tally);
break;

} else
tally += receive(myPid + (1<< k));

} // Process 0 now has the grand total.
// We can use another loop to broadcast the result.

I’ll provide an Erlang version on Monday.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 10 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Reduce & Scan

Scan is very similar to reduce. We just change the downward tree.
For reduce, each process just forwards the grand total to its
descendants.
For scan:

I Each process records the tallies from its left subtree(s) during the
upward sweep.

I During the downward sweep, each process receives the tally for
everything to the left of the subtree for this process.

F The process adds the tally from its own left subtree to the value from
its parent, and sends this to its own right subtree.

F The process continues the downward sweep for its own left subtree.
F When we reach a leaf, the process does the final accumulate.

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 11 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Preview

January 16: Generalized Reduce and Scan
Homework: Homework 1 deadline for early-bird bonus (11:59pm)

Homework 2 goes out (due Feb. 1) – Reduce and Scan
January 18: Reduce and Scan Examples

Homework: Homework 1 due 11:59pm
January 20: Architecture Review

Reading: Pacheco, Chapter 2, through section 2.2
January 23: Shared Memory Architectures

Reading: Pacheco, Chapter 2, through section 2.3
Homework: Homework 2 deadline for early-bird bonus (11:59pm)

Homework 3 goes out (due Feb. 17)
January 25: Message Passing Architectures

Homework: Homework 2 due 11:59pm
January 27–February 6: Parallel Performance
February 8–17: Parallel Sorting

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 12 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

Review Questions
What is the cumulative sum of [1,7,-5,12,73,19,0,12]?

I For the same list as above, what is the cumulative product?
I For the same list as above, what is the cumulative maximum?

Draw a tree showing how the sum (simple, not cumulative) of the
values in the list above can be computed using reduce. Assume
that there are eight processes, and each starts with one element
of the list.
Draw a graph like the one on slide 8 for a scan of eight values.
Label each edge of your graph with the value that will be sent
along that edge when computing the cumulative sum of the values
in the list above. Assume that there are eight processes, and each
starts with one element of the list.
Add a second label to each edge indicating whether the value is
local to that process or if the edge requires inter-process
communication. Write ’L’ for local, and ’G’ for global (i.e.
inter-process communication).

Mark Greenstreet Scan CS 418 – Jan. 13, 2017 13 / 13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_13
https://en.wikipedia.org/wiki/2017

