
Reduce

Mark Greenstreet

CpSc 418 – Jan. 11, 2017

Outline:
Problem Statement
Design Guidelines
Timing Measurements
Preview, Review, etc.
Table of Contents

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 1 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017


Objectives

Understand why using a tree-structure for communication
improves efficiency.
Learn how to implement reduce using Erlang processes and
messages.
Learn how to use the reduce function in the course Erlang library.

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 2 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017


Problem Statement
Given a list, L of N values, how can we use P processors to efficiently
compute the sum of the values of the elements?

Possible in-class exercise:
Divide class into groups of five or six.
Hand each group a sheet of numbers. We could arrange the
numbers is blocks, or perhaps hand each group a stack of five or
six sheets, each of which has around 10 small integers (one to
three digits) to add.
Give them the task that the team that computes the sum of the
numbers first wins (perhaps have a bag of M&M’s or similar as a
prize.
See what they do.

Now, go back to the observations we made from the previous lecture.

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 3 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017


Summarizing the numbers
Interprocess operations such as spawn, send, and receive are
much slower than operations within a single process such as + or
a function call.
Let’s use a tail-call as the cost of an operation within a process.
Spawning a process is about 200× the cost of a tail call.
For short messages, send and receive are about 350× the cost of
a tail call.
For longer messages, the time grows with message length.
Sending 100 numbers takes about twice as long as sending 1.

My guess is that many of the groups had a “team captain” who handed out the sheets
of paper. Each team member would compute their local sum and report it to the team
captain. The team captain computed the final sum and reported it (FTW).
We can do a bit of front-of-class theatre, you, Devon, me (and if we could get one or
two others that would be great). Act it out with slow communication actions, e.g. “tai
chi” style. Two problems should become apparent: starting where the team captain
has all the data and distributes it is a bottleneck. Having everyone communicate send
their result directly to the captain is a bottleneck.

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 4 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017


How to Write Efficient Parallel Code
This is a review from the previous lecture.

Think about communication costs
I Message passing is good – it makes communication explicit.
I Pay attention to both the number of messages and their size.
I Combining small messages into larger ones often helps.

Think globally, but compute locally
I Move the computation to the data, not the other way around.
I Keep the data distributed across the parallel processes.

Think about big–O
I If N is the problem size, you want the computation time to grow

faster with N than the communication costs.
I Then, your solution becomes more efficient for larger values of N.

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 5 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017


Interactive Exercise

Design an efficient way to add N numbers using P processes.
Should plan to start with each process having ∼N/P values – this
is the “Keep the data distributed across the parallel processes
concept.
Should “discover” the tree structure for communication

I Point to bring out: we are not using a tree to get more parallelism in
the final P − 1 additions. These adds don’t take long enough to
matter. The P − 1 communication actions do matter.

I Reducing the depth of the communication actions from P − 1 (when
the team captain handles all of them) to log P is what matters.

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 6 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017


Now, translate it into code
Let N = 2K .
We can have one process that creates a binary tree with N leaves.
Each leaf process:

I waits to receive a task with a tag.
I does the task.
I sends the result to its parent (with a parent provided tag).

Each intermediate node:
I Waits to receive a two functions and a tag.
I Call the two functions LeafTask and Combine.
I The node sends the two functions with a left or right tag to its

children.
I The node receives results from its children, combines them with

Combine and sends the result with the parent provided tag to its
parent.

I We now discover that the leave probably receives
{LeafTask, Combine, LeftRightTag, PPid}

just like the intermediate nodes. The leaves just ignore the
Combine.

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 7 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017


Finish the code sketch

The function for the process is pretty much like the intermediate
nodes except

I There’s one function to create the tree.
I Another function takes a process tree and the LeafTask and

CombineTask functions and sends the result home.

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 8 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017


It’s not quite that simple

We want the leaf nodes to generate their arrays as one task, and
compute the sums as another task.
This means that the children need to “remember” state between
the two tasks.
There are a several possible solutions:

I The LeafTask function could take an argument of ProcState and
return a tuple of {ValueForCombine, NewProcState}.

I The leaf process makes its recursive call with NewProcState.
I Or, we could use the Erlang process dictionary with erlang:put

and erlang:get, but that’s not very functional. I prefer the
ProcState approach.

And, we need to deal with end-of-life issues.
I Use the atom exit instead of the {LeafTask, Combine} tuple.

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 9 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017


We can do better

Note: I’m not sure how far we can make it through this material
with the various in-class activities. If we make it through the
simple implementation of reduce on the previous slide, I’m happy.
The rest of this is optional – equivalently, it’s material we could
move into the Jan. 13 or Jan. 16 lecture.
With the design above, half of the processes sit around idle, while
waiting for the leaves to do their work.
We can make a tree where each process forwards messages to
its right subtree(s) and then does its own LeafTask.
I’m sure I’ve got a figure from some previous year, I’ll find it.

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 10 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017


But we don’t need to code the better version in class

The better version is implemented in the course Erlang library.
We now show how to do the reduce example with
wtree:reduce.

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 11 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017


Summary

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 12 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017


Preview

After we make it through reduce, we’ll cover
scan – I want to have one lecture on scan by the end of the Jan.
16 lecture to have the students at a place that they can start on
HW2.
generalized scan and reduce.
Then, we transition to ∼4 lectures on parallel architectures.

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 13 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017


Review Questions

Mark Greenstreet Reduce CS 418 – Jan. 11, 2017 14 / 14

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_11
https://en.wikipedia.org/wiki/2017

