
Processes and Messages

Mark Greenstreet

CpSc 418 – Jan. 9, 2017

Outline:
Processes
Messages
Timing Measurements
Preview, Review, etc.
Table of Contents

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 1 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017
http://creativecommons.org/licenses/by/4.0/
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Objectives

Introduce Erlang’s features for concurrency and parallelism
I Spawning processes.
I Sending and receiving messages.

Describe timing measurements for these operations and the
implications for writing efficient parallel programs.

I Communication often dominates the runtime of parallel
programs.

The source code for the examples in this lecture is available here:
procs.erl.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 2 / 20

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/lecture/01-09/src/procs.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Processes – Overview

The built-in function spawn creates a new process.
Each process has a process-id, pid.

I The built-in function self() returns the pid of the calling process.
I spawn returns the pid of the process that it creates.
I The simplest form is spawn(Fun).

F A new process is created – “the child”.
F The pid of the new process is returned to the caller of spawn.
F The function Fun is invoked with no arguments in that process.
F The parent process and the child process are both running.
F When Fun returns, the child process terminates.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 3 / 20

http://www.erlang.org/doc/man/erlang.html#spawn-1
http://www.erlang.org/doc/man/erlang.html#self-0
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Processes – a friendly example

hello(N)->
[spawn(fun() -> io:format(

"hello world from process ∼b∼n", [I])
end)

|| I <- lists:seq(1,N)
].

Running the code:

1> c(procs).
{ok,procs}
2> procs:hello(3).
hello world from process 1
hello world from process 2
hello world from process 3
[<0.40.0>,<0.41.0>,<0.42.0>]

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 4 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Messages
To solve tasks in parallel, the processes need to communicate.
Sending a message: Pid ! Expr.

I Expr is evaluated, and the result is sent to process Pid.
I We can send any Erlang term: integers, atoms, lists, tuples, . . .

Receiving a message:
receive

Pattern1 -> Expr1;
Pattern2 -> Expr2;
...
PatternN -> ExprN

end

If there is a pending message for this process that matches one of
the patterns,

I The message is delivered, and the value of the receive
expression is the value of the corresponding Expr.

I Otherwise, the process blocks until such a message is received.

Message passing is asynchronous: the sending process can
continue its execution before the receiver gets the message.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 5 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Adding two numbers using processes and messages

The plan:
I We’ll spawn a process in the shell for adding two numbers.
I This child process receives two numbers, computes the sum, and

sends the result back to the parent.

add proc(PPid) ->
receive

A -> receive
B ->

PPid ! A+B
end

end.

adder() ->
MyPid = self(),
spawn(fun() ->

add proc(MyPid)
end).

3> Apid = procs:adder().
<0.44.0>
4> Apid ! 2.
2
5> Apid ! 3.
3
6> receive Sum -> Sum end.
5

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 6 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Reactive Processes and Tail Recursion
Often, we want processes that do more than add two numbers
together.
We want processes that wait, receive a message, process the
message, and then wait for the next message.
In Erlang, we do this with recursive functions for the child process:

acc proc(Tally) ->
receive

N when is integer(N) ->
acc proc(Tally+N);

{Pid, total} ->
Pid ! Tally,
acc proc(Tally)

end.

accumulator() ->
spawn(fun() ->
acc proc(0)

end).

7> BPid = procs:accumulator().
<0.53.0>
8> BPid ! 1.
1
9> BPid ! 2.
2
10> BPid ! 3.
3
11> BPid ! {self(), total}.
{<0.33.0>, total}
12> receive T1 -> T1 end.
6

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 7 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Reactive Processes and Tail Recursion
Often, we want processes that do more than add two numbers
together.
We want processes that wait, receive a message, process the
message, and then wait for the next message.
In Erlang, we do this with recursive functions for the child process:

acc proc(Tally) ->
receive

N when is integer(N) ->
acc proc(Tally+N);

{Pid, total} ->
Pid ! Tally,
acc proc(Tally)

end.

accumulator() ->
spawn(fun() ->
acc proc(0)

end).

13> BPid ! 4.
4
14> BPid ! {self(), total}.
{<0.33.0>, total}
15> BPid ! 5.
5
16> BPid ! 6.
6
17> BPid ! {self(), total}.
{<0.33.0>, total}
18> receive T2 -> T2 end.
10
19> receive T3 -> T3 end.
21

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 7 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Message Ordering

Given two processes, Proc1 and Proc2, messages sent from
Proc1 to Proc2 are received at Proc2 in the order in which they
were sent.
Message delivery is reliable: if a process doesn’t terminate, any
message sent to it will eventually be delivered.
Other than that, Erlang makes no ordering guarantees.

I In particular, the triangle inequality is not guaranteed.
I For example, process Proc1 can send message M1 to process

Proc2 and after that send message M2 to Proc3.
I Process Proc3 can receive the message M2, and then send

message M3 to process Proc2.
I Process Proc2 can receive messages M1 and M3 in either order.
I Draw a picture to see why this is violates the spirit of the triangle

inequality.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 8 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Tagging Messages

It’s a very good idea to include “tags” with messages.
This prevents your process from receiving an unintended message:

“Oh, I forgot that another process was going to send me
that. I thought it would happen later.”

For example, my accumulator might be better if instead of just
receiving an integer, it received

{2, add}

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 9 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Timing Measurements

We write parallel code to solve problems that would take too long
on a single CPU.
To understand performance trade-offs, I’ll measure the time for
some common operations in Erlang programs:

I The time to make N recursive tail calls.
I The time to spawn an Erlang process.
I The time to send and receive messages:

F Short messages.
F Messages consisting of lists of varying lengths.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 10 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Tail Call Time

N
0 200 400 600 800 1000

t
(µ
s)

-2

0

2

4

6

8

10 bowen
thetis bowen.ugrad.cs.ubc.ca:

t = (6.4N + 269)ns, line of best fit
t = 64.3µs, N = 10K
t = 640µs, N = 100K

thetis.ugrad.cs.ubc.ca:
t = (4.7N + 170)ns, line of best fit
t = 46.9µs, N = 10K
t = 466µs, N = 100K

Measurement: start the timing measurement, make N tail calls, end the
timing measurement.
The measurements on this slide and throughput the lecture were made
using the time it:t function from the course Erlang library.

I time it:t(Fun repeatedly calls Fun until about one second has elapsed.
It then reports the average time and standard deviation.

I time it:t has lots of options.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 11 / 20

http://www.ugrad.cs.ubc.ca/~cs418/resources/index.html
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Process Spawning Time

N
0 2 4 6 8 10

t
(µ
s)

0

2

4

6

8

10

12

14

16

18 bowen
thetis bowen.ugrad.cs.ubc.ca:

t = (1.30N + 2.8)µs, line of best fit
t = 127µs, N = 100
t = 1.2ms, N = 1000

thetis.ugrad.cs.ubc.ca:
t = (0.88N + 1.5)µs, line of best fit
t = 89.4µs, N = 100
t = 887µs, N = 1000

Measurement: root spawns Proc1; Proc1 spawns Proc2, and then Proc1
exits; Proc2 spawns Proc3, and then Proc2 exits; . . . ; ProcN sends a
message to the root process, and then ProcN exits. The root process
measures the time from just before spawning Proc1 until receiving the
message from ProcN.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 12 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Send+Receive Time

Set-up: Two processes do a fixed amount of “work” while
exchanging short messages with non-blocking receives.
Nmsg is the number of messages sent and received by each
process.
The slope of the line is the time per message:

I ∼1.7µs/message on thetis.ugrad.cs.ubc.ca, erts 18.2.
I My laptop is about three-times faster. I’m running erts 19.2.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 13 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Message Time vs. Message Size

Set-up: as on the previous slide. This time each message
consists of a list of Nstuff small integers.
Each process sends and receives 5000 messages per run.
The slope of the line divided by 5000 is the time per element:

I ∼17ns/message on thetis.ugrad.cs.ubc.ca, erts 18.2.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 14 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Bandwidth vs. Message Size

Subtract the “non-message” time
from the run-time and calculate:

Nmsg × Nstuff

T

To get elements per second.

Bandwidth grows rapidly with message length for Nstuff < 1000,
then drops.

I Short messages have low bandwidth due to fixed overheads with
each message.

I I’m guessing that bandwidth drops some for messages with more
than 1000 elements because the Erlang runtime is somehow
optimized for short messages.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 15 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Summarizing the numbers
Interprocess operations such as spawn, send, and receive are
much slower than operations within a single process such as + or
a function call.
An Erlang tail call is about 4.7ns, roughly 10 machine instructions.
An Erlang tail call and add is about 4.7ns, roughly 10 machine
instructions.
Spawning a process is about 200× the cost of a tail call.
For short messages, send and receive are about 350× the cost of
a tail call.

I The send/receive overhead can be amortized by sending longer
message.

I Each additional list element is about 3× the cost of a tail call.
I Beware of any model that just counts the overhead and ignores the

length, or just considers bandwidth and ignores the overhead.
We will often refer to the ratio of the relationship between the time
for interprocess operations and local operations as big.

I In practice, big is 100 to 10000 for shared-memory computers.
I Big can be even bigger for other architectures.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 16 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

How to Write Efficient Parallel Code

Think about communication costs
I Message passing is good – it makes communication explicit.
I Pay attention to both the number of messages and their size.
I Combining small messages into larger ones often helps.

Think globally, but compute locally
I Move the computation to the data, not the other way around.
I Keep the data distributed across the parallel processes.

Think about big–O
I If N is the problem size, you want the computation time to grow

faster with N than the communication costs.
I Then, your solution becomes more efficient for larger values of N.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 17 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Summary

Processes are easy to create in Erlang.
I The spawn mechanism can be used to start other processors on

the same CPU or on machines spread around the internet.
Processes communicate through messages

I Message passing is asynchronous.
I The receiver can use patterns to select a desired message.

Reactive processes are implemented with tail-recursive functions.
Interprocess operations are much slower than local ones

I This is a key consideration in designing parallel programs.
I We’ll learn why when we look at parallel architectures later this

month.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 18 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Preview

January 11: Reduce
Reading: Learn You Some Erlang, Errors and Exceptions through

A Short Visit to Common Data Structures
January 13: Scan

Reading: Lin & Snyder, chapter 5, pp. 112–125
Mini-Assignment: Mini-Assignment 2 due 10:00am

January 16: Generalized Reduce and Scan
Homework: Homework 1 deadline for early-bird bonus (11:59pm)

Homework 2 goes out (due Feb. 1) – Reduce and Scan
January 18: Reduce and Scan Examples

Homework: Homework 1 due 11:59pm
January 20–27: Parallel Architecture
January 29–February 6: Parallel Performance
February 8–17: Parallel Sorting

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 19 / 20

http://learnyousomeerlang.com
http://learnyousomeerlang.com/errors-and-exceptions
http://learnyousomeerlang.com/a-short-visit-to-common-data-structures
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Review Questions

How do you spawn a new process in Erlang?
What guarantees does Erlang provide (or not) for message
ordering?
Give an example of using patterns to select messages.
Why is it important to use a tail-recursive function for a reactive
process?

I In other words, why is it a bad idea to use a head-recursive function
for a reactive process.

I The answer isn’t explicitly on the slides, but you should be able to
figure it out from what we’ve covered.

Modify one of the examples in this lecture to use a time-out with
one or more receive operations. Try it and show that it works.
Implement the message flushing described in LYSE to show
pending messages on a time-out. Demonstrate how it works.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 20 / 20

http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Supplementary material

Debugging concurrent Erlang Code.
Table of contents.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 21 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Tracing Processes
When you implement a reactive process, it can be handy to trace the
execution. Here’s a simple approach:

Add an io:format call when entering the function and after
matching each receive pattern.
Example:

acc proc(Tally) ->
io:format("∼p: acc proc(∼b)∼n", [self(), Tally]),
receive

N when is integer(N) ->
io:format("∼p: received ∼b∼n", [self(), N]),
acc proc(Tally+N);

Msg = {Pid, total}
io:format("∼p: received ∼p∼n", [self(), Msg]),
Pid ! Tally,
acc proc(Tally)

end.

Try it (e.g. with the example from slide 7.
Don’t forget to delete (or comment out) such debugging output
before releasing your code.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 22 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Time Outs
If your process is waiting for a message that never arrives, e.g.
because

I You misspelled a tag for a message, or
I The receive pattern is slightly different than the message that was

sent, or
I Something went wrong in the sending process, and it died before

sending the message, or
I You got the message ordering slightly wrong, and there’s a cycle of

processes waiting for each other to send something, or
I . . .

Then your process can wait forever, your Erlang shell can hang,
and it’s a very unhappy time in life.
Time-outs can handle these problems more gracefully.

I See Time Out in LYSE .
I Note: time-outs are great for debugging. They should be used with

great caution elsewhere because they are sensitive to changes in
hardware, changes in the scale of the system, and so on.

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 23 / 20

http://learnyousomeerlang.com/more-on-multiprocessing#time-out
http://learnyousomeerlang.com
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

Table of Contents

Objectives
Processes
Messages
Timing Measurements
Summary
Preview of upcoming lectures
Review of this lecture
Supplementary material (debugging tips)
Table of Contents

Mark Greenstreet Processes and Messages CS 418 – Jan. 9, 2017 24 / 20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/January_09
https://en.wikipedia.org/wiki/2017

