
CPSC 418: Parallel Computing Winter 2016–2017 Term 2
In Class Worksheet © 2017 by Ian M. Mitchell

and Mark Greenstreet

Introduction to Erlang
solution set

Name: Mark Greenstreet Student Number: 11111111

1. Read You Some Erlang. What is the value of each Erlang expression? (Don’t just type it
in—try to reason out the answer.)

(a) 42 =:= 6 * 7.0 or 1 <= 2.
Ans. This code causes a syntax error: <= should be =<. Erlang uses a different symbol
for “less-than-or-equal-to” than many common languages (C, Java, Python, . . .). We
can “fix” that and try

42 =:= 6 * 7.0 or 1 <= 2.
This also generates a syntax error, but the reason is more subtle. For grading purposes,
we might expect you to know about =< on an exam. The rest of this answer isn’t
examinable material, but it may make it easier for you to write Erlang code. The
syntax error in the second part is because of Erlang operator precedence. The comparison
operators have lower precedence than boolean operations such as or. Here’s the “fully
parenthesized” version of the expression above following Erlang’s precedence:

42 =:= ((6 * 7.0) or 1) <= 2.
If we try

((6 * 7.0) or 1).
We get a “bad argument” error because or doesn’t apply to numerical values. That
makes sense. Why does

42 =:= ((6 * 7.0) or 1) <= 2.
produce a syntax error? That’s because the comparison operations in Erlang can be
“chained”. For example,

2 < 3 < true.
is a syntax error, but (2 < 3) < true.
evaluates to false because (2 < 3) evaluates to true, and true < true evaluates to
false.
Back to our original problem, we can just add parentheses to get the “intended” expres-
sion: (42 =:= 6 * 7.0) or (1 =< 2).
has a value the value true.

(b) tl([1|2]).
Ans. The correct answer is:

Make Ian sit in a comfy chair until he promises to never ask this question again.

1

http://erlang.org/doc/reference_manual/expressions.html#id85073
http://www.montypython.net/scripts/spanish.php

I didn’t know you can make a list in Erlang whose tail is not a list this. Now I’m fielding
questions about it on piazza.
OK, the official answer is 2. Erlang allows the tail of a list to be any Erlang term. In
practice, we will always construct “properly terminated” lists. If you write code that
ends a list with something other than [], expect us to deduct points.
Now, for the geeky stuff. I’m guessing the [Head | NonList] is a hangover from ear-
lier functional languages. Lisp is the great* grandparent of pretty much all functional
languages. Lisp allows the tail of a list to be a non-list because early implementations
had to run on machines with very small amounts of main memory (e.g. 1Kbyte). Rather
than “wasting” a whole word with null, early Lisp versions did some bit-fiddling to
distinguish list pointers from other values, and allowed an arbitrary value in the tail of
a list. Of course, programmers found ways to use this; so, “modern” Lisp dialects (i.e.
Common Lisp) still support this, and I’ve seen Lisp APIs that rely on this feature.
OTOH, I have never seen this “feature” used in Erlang. Maybe it is. If you’re really
worried about memory usage, Erlang has “binaries”. You might recall that we said you
could skip that section of Learn You Some Erlang . That’s because we’re using Erlang
to demonstrate fundamental concepts of parallel programming. If you really want to
develop serious Erlang applications, then you’ll want to go back and read that section,
but you don’t need it for this course.

(c) tl([1,[2, 3, 4]]).
Ans. The term [1,[2, 3, 4]] is a list of two elements: the first element is 1 and
the second element is [2, 3, 4]. The value of tl([1,[2, 3, 4]]) is the list
consisting of the second through last elements of [1,[2, 3, 4]]. As noted above,
[1,[2, 3, 4]] is a list of two elements; so the second element is the last element.
That means that the value of tl([1,[2, 3, 4]]) is a list of one element, where that
element is [2, 3, 4]. That brings us to the answer. The value of tl([1,[2, 3, 4
]]) is
[[2, 3, 4]]If that outer pair of []s bothers you, think if we asked for tl[1,2]. The list

[1,2] has two elements, and tl[1,2] is the list of one element where that element is 2.
So, tl[1,2] = 2. That’s not surprising. Now, replace 2 with [2,3,4] and you get the
answer to the original question.

(d) length([1 | [2 | [3, 4, 5]]]).
Ans. We’ll evaluate this one from the inside of the square-brackets to the full expression.

[2 | [3, 4, 5]]).
is a list whose head is 2 and whose tail is [3, 4, 5]. We can rewrite the original
expression as

length([1 | [2, 3, 4, 5]]).
Using the same reasoning again, we get length([1, 2, 3, 4, 5]).
That’s the length of a list with five elements. The answer is 5.

(e) x = [1 | [[2, 3, 4], 5]].
Ans. This generates an error because x is an atom. We are asking Erlang to “match”
the list [1 | [[2, 3, 4], 5]] They don’t match.
The “solution” is to use a real, Erlang variable. Erlang variable names must start with a
capital letter of _. So,

2

https://piazza.com/class/ixiwsokndq2rv?cid=54
https://common-lisp.net
http://learnyousomeerlang.com/starting-out-for-real#bit-syntax
http://learnyousomeerlang.com/content
http://learnyousomeerlang.com/starting-out-for-real#invariable-variables

X = [1 | [[2, 3, 4], 5]].
is just fine.
Now what happens if after binding X to [1 | [[2, 3, 4], 5]]. we give the
command

X = [1 , [2, 3, 4], 5].
That works just fine because [1 | [[2, 3, 4], 5]]. and X = [1 , [2, 3,
4], 5]. are two ways of writing the same list. If instead we tried:

X = [1 , 2, 3, 4, 5].
We get a “no match” error again because Erlang can’t match the value of the right side,
[1 , 2, 3, 4, 5]. to the value that X already has, i.e. [1 | [[2, 3, 4], 5
]].. When using the Erlang shell, this can be a hassle. During a long session, we have
keep thinking of new names for variables. Fortunately, Erlang lets us ask the shell to
“forget” a variable. We can give the command:

f(X).
and now X is “forgotten”. Having erased the binding for X, we can try

X = [1 , 2, 3, 4, 5].
again, and this time it works. Note that you can only use f(Variable) as a command
to the Erlang shell; you can’t use it in other Erlang code.

(f) [{ value, Purple } || Purple <- [5, george, "22"]].
Ans. This is a list comprehension. It builds the list of elements of the form {value,
Purple} setting Purple to each element of the list [5, george, "22"]. The value of
the expression is:

[{value, 5}, {value, geoge}, {value, "22"}].
Note that value is an atom – it’s a kind of constant, and it’s the same value in each
tuple in the result list.

2. Erlang Types. What is the type of each of the following Erlang expressions (variable, atom,
boolean, integer, float, list or tuple)?

(a) jeopardy
Ans. This is an Erlang atom. An atom is any token that starts with a lower-case letter
and continues with letters (upper or lower case), digits, and underscores. You can also
make an atom by putting any string of characters between a pair of single quotes. For
example,

[is_atom(A) || A <- [x, x_or_15_Times_y, 'x or 15*y', '']].
has the value

[true, true, true, true]

(b) True
Ans. This is an Erlang variable. Erlang variable names start with a capital letter of _
and continue with letters (upper or lower case), digits, and underscores.

(c) "3.14159"
Ans. This is an Erlang list. It’s also a string because Erlang represents strings as lists of
integers where each integer is a valid ASCII character. When deciding whether to print
a list of integers as a list or a string, the Erlang shell considers the following characters
to be valid, printable, ASCII values:

3

http://learnyousomeerlang.com/starting-out-for-real#list-comprehensions
http://learnyousomeerlang.com/starting-out-for-real#atoms
http://learnyousomeerlang.com/starting-out-for-real#invariable-variables
http://learnyousomeerlang.com/starting-out-for-real#lists

• Any value N with 8 ≤ N ≤ 13 or N = 27. These are various cursor control characters
(tab, newline, etc.).

• Any value N with 32 ≤ N ≤ 126 – these are the “usual” printable characters.
• Any value N with 160 ≤ N ≤ 255 – various special symbols and accented characters

from various European languages.

(d) 6.02214e23
Ans. This is an Erlang floating point constant. It satisfies the type recognizers is_float
and is_number.

(e) [{ ok, 42 }]
Ans. This is an Erlang tuple. It has two elements. The first element is the atom ok and
the second is the number number 42. 42 satisfies the type recognizers is_integer and
is_number.

(f) false Ans. This is an Erlang boolean. The boolean constants true and false are really
special atoms. They satisfy the type recognizer is_atom. As noted in Learn You Some Erlang ,
the operations such as and, or, if, . . . , all work with true and false just the way they
should; so, you can think of true and false as being the two, boolean constants and
not worry about the technical detail that they also happen to be atoms. Of course if
you write

f(A) when is_atom(A) -> atom;
f(_) -> molecule. Then note that f(1 < 2) evaluates to atom.

(g) _haberdashery Ans. This is an Erlang variable because it starts with an underscore.
Starting a variable with an underscore suppresses compiler warnings about the value
not being used. A couple of remarks.

• If you have a variable such as _haberdashery as a parameter to a function or
bind it with _haberdashery = . . . , you can use the value of that is bound to
_haberdashery. DON’T. Even though the compiler accepts it, starting a vari-
able name with _ is telling the reader that you are ignoring the variable. If you say
you’re ignoring the variable, then you should ignore it. We will feel free to take off
“style points” on solutions that use the value of variables whose names begin with
_.

• Stub functions in the templates that we provide for homework solutions usually have
parameters with names that begin with _. This is so the template file will compile
without warnings (that’s good). When you write your own code and use the values
of those parameters, you should remove the _ from the name. For example, if a
stub has a parameter called _ListOfExoPlanets, your code should rename this to
ListOfExoPlanets in any pattern where the value is used.

• The name _ is syntactically a variable, but it is never bound to a value. For example,
if you write:

f1(_,_) -> 42.
f2(_A, _A) -> 42.

then f1(1,1), f1(1,2), and f2(1,1) will all evaluate to 42. However, f2(1,2).
fails with the error “no function clause matching . . . f2(1,2)”. That’s because _A
cannot be bound to both 1 and 2. Because _ is never bound to a value, it can
“match” both 1 and 2.

4

http://erlang.org/doc/reference_manual/data_types.html#id65900
http://erlang.org/doc/man/erlang.html#is_float-1
http://erlang.org/doc/man/erlang.html#is_number-1
http://learnyousomeerlang.com/starting-out-for-real#tuples
http://learnyousomeerlang.com/starting-out-for-real#atoms
http://learnyousomeerlang.com/starting-out-for-real#numbers
http://erlang.org/doc/man/erlang.html#is_integer-1
http://erlang.org/doc/man/erlang.html#is_number-1
http://learnyousomeerlang.com/starting-out-for-real#bool-and-compare
http://learnyousomeerlang.com/starting-out-for-real#atoms
http://erlang.org/doc/man/erlang.html#is_atom-1
http://learnyousomeerlang.com/content
http://learnyousomeerlang.com/starting-out-for-real#invariable-variables

(h) { [1 | [2 | [3]]] } % 1 element tuple (containing a 3 element list). Ans. This
is an Erlang tuple of one element. The element is the list of three integers, [1, 2, 3].

3. Write You Some Erlang. Write a function sublist(List, Start, End) where List
is a list, Start is a positive integer and End is an integer greater than or equal to start.
The function returns the sublist of List containing elements Start (inclusive) through End
(exclusive). Remember that Erlang likes to start numbering elements from 1.
Ans. Here’s the solution that we worked out in class:

-module(sublist).
-export([sublist/3, testlist/0]).

sublist([], _Start, _End) -> [];
sublist(_List, 1, 1) -> [];
sublist([H | T], 1, End) -> [H | sublist(T, 1, End-1)];
sublist([_H | T], Start, End) -> sublist(T, Start-1, End-1).

It’s a good, in-class solution. However, we should add some guards. For example, with the
solution above:

sublist([1,2,3], 2, 1000).
returns [2,3] – it should probably fail with some kind of error. As another example

sublist([1,2,3,4,5], 2, 0).
returns [2,3,4,5]; again, a failure would be better. The same proble occurs if End is a
non-integer, floating point number. Let’s add some guards. We’ll start with:

sublist([], _Start, _End) -> [];
What should the guard be? Well, we have only “finished” the job if _Start and _End are
both 1. We could write:

sublist([], _Start, _End) when _Start =:= 1, _End =:= 1 -> [];
but I’ll take of points for using the value of a variable whose name starts with _. Removing
the underscores gives us:

sublist([], Start, End) when Start =:= 1, End =:= 1 -> [];
That’s better. Now we see this is just a special case of the next pattern:

sublist(_List, 1, 1) -> [];
So, we decide to delete the first pattern entirely!

Now, let’s look at the second pattern:
sublist(_List, 1, 1) -> [];

Does it need a guard? Well, consider, sublist(monkey, 1, 1). This matches the pattern
and produces the value []. We probably intend that the first argument should be a list. The
pattern with the guard is

sublist(List, 1, 1) when is_list(List) -> [];
Do we need guards for 1 and 1. Nope – any call to sublist that matches this pattern must
have a value of the integer 1 for the second and third arguments; there’s nothing more we
need to check.

The next pattern is
sublist([H | T], 1, End) -> [H | sublist(T, 1, End-1)];

The pattern enforces that the first argument is a list (good), and that the second argument is
a positive integer (good). We’re not checking that End is an integer, or that End >= Start.

5

http://learnyousomeerlang.com/starting-out-for-real#tuples
http://learnyousomeerlang.com/syntax-in-functions#guards-guards

We could be lazy and just let the code recurse until something goes wrong and generates
an error. OTOH, failing early usually gives us better error messages and makes our code
easier to debug and maintain. The only downside is that the extra guard checking adds a
bit of execution overhead. Here, the best practice is to write code that is easy to debug and
maintain. If and only if it turns out that the code is performance critical, then we can
reevaluate that choice. So, we’ll add a guards for End.

sublist([H | T], 1, End) when is_integer(End), 1 < End -> [H | sublist(T,
1, End-1)];
One remark about syntax. If we have a list of guards separated by commas, that means that
all of them must hold. The comma acts like a andalso – if one of the earlier guard clauses
evaluates to false, then the others are note evaluated. We can also use semicolons that are kind
of like orelse. See the description of guard seqeunces in the Erlang reference manual if you
want the gory details. For the most part, in this class, we’ll find it convenient to write a list of
guards separated by commas to indicate that they all must hold. If you want something more
complicated, just use andalso and orelse and you can make it clear what you’re trying to say.

The final pattern is
sublist(sublist([_H | T], Start, End) -> sublist(T, Start-1, End-1).

Here, we’ll just add our guards that Start and End must be positive integers with Start =<
End:

sublist(sublist([_H | T], Start, End)
when is_integerStart, is_integer(End), 1 =< Start, Start =< End ->

sublist(T, Start-1, End-1).
Putting it all together, we get

sublist(List, 1, 1) when is_list(List) -> [];
sublist([H | T], 1, End) when is_integer(End), 1 < End -> [H | sublist(T, 1, End-1)];
sublist([_H | T], Start, End)

when is_integer(Start), is_integer(End), 1 =< Start, Start =< End ->
sublist(T, Start-1, End-1).

That’s it!

4. Referential Transparency: Not Just for Functional Languages! Write a function
dotProd(A, B) in your favorite imperative language (eg: Java, Python, C, C++, etc.) which
returns the dot product of the one-dimensional vectors of numbers A and B. You may assume
that A and B are stored in arrays, lists, or whatever data type is convenient for your language
choice. However, your code must display referential transparency; in other words, you may
not change the value of a variable once it is set.
Not an answer: We didn’t cover this one in class. I’ll leave it unanswered. However, if there’s
a discussion on piazza, or you bring the question to office hours or tutorial, we’ll be happy to
discuss it.

6

http://erlang.org/doc/reference_manual/expressions.html#id84508

