
Introduction to Erlang

Mark Greenstreet

CpSc 418 – January 6, 2016

Outline:
Erlang Basics
Functional programming
Example, sorting a list
Functions
Supplementary Material
Table of Contents

Unless otherwise noted or cited, these slides are copyright 2017 by Mark Greenstreet
and are made available under the terms of the Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 1 / 26

http://creativecommons.org/licenses/by/4.0/


Objectives

Learn/review key concepts of functional programming:
I Referential transparency.
I Structuring code with functions.

Introduction to Erlang
I Basic data types and operations.
I Program design by structural decomposition.
I Writing and compiling an Erlang module.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 2 / 26



Erlang Basics

Numbers:
I Numerical Constants: 1, 8#31, 1.5, 1.5e3,

but not: 1. or .5
I Arithmetic: +, -, *, /, div, band, bor, bnot, bsl, bsr, bxor

Booleans:
I Comparisons: =:=, =/=, ==, /=, <, =<, >, >=
I Boolean operations (strict): and, or, not, xor
I Boolean operations (short-circuit): andalso, orelse

Atoms:
I Constants: x, ’big DOG-2’
I Operations: tests for equality and inequality. Therefore pattern

matching.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 3 / 26

http://learnyousomeerlang.com/starting-out-for-real#numbers
http://erlang.org/doc/reference_manual/data_types.html#id65900
http://erlang.org/doc/reference_manual/expressions.html#id81371
http://learnyousomeerlang.com/starting-out-for-real#bool-and-compare
http://erlang.org/doc/reference_manual/expressions.html#id81088
http://erlang.org/doc/reference_manual/expressions.html#id81879
http://erlang.org/doc/reference_manual/expressions.html#id81879
http://learnyousomeerlang.com/starting-out-for-real#atoms
http://erlang.org/doc/reference_manual/data_types.html#id76562


Lists and Tuples

Lists:
I Construction: [1, 2, 3],
[Element1, Element2, . . ., Element N | Tail]

I Operations: hd, tl, length, ++, --
I Erlang’s list library, http://erlang.org/doc/man/lists.html:
all, any, filter, foldl, foldr, map, nth, nthtail, seq,
sort, split, zipwith, and many more.

tuples:
I Construction: {1, dog, "called Rover"}
I Operations: element, setelement, tuple size.
I Lists vs. Tuples:

F Lists are typically used for an arbitrary number of elements of the
same “type” – like arrays in C, Java, . . . .

F Tuples are typically used for an fixed number of elements of the
varying “types” – likes a struct in C or an object in Java.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 4 / 26

http://learnyousomeerlang.com/starting-out-for-real#lists
http://erlang.org/doc/reference_manual/data_types.html#id69600
http://erlang.org/doc/reference_manual/expressions.html#id82180
http://erlang.org/doc/man/lists.html
http://learnyousomeerlang.com/starting-out-for-real#tuples
http://erlang.org/doc/reference_manual/data_types.html#id68683


Strings

What happened to strings?!
Well, they’re lists of integers.
This can be annoying. For example,

1> [102, 111, 111, 32, 98, 97, 114].
"foo bar"
2>

By default, Erlang prints lists of integers as strings if every integer
in the list is the ASCII code for a “printable” character.
Learn You Some Erlang discusses strings in the “Don’t drink too
much Kool-Aid” box for lists.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 5 / 26

http://learnyousomeerlang.com
http://learnyousomeerlang.com/starting-out-for-real#lists


Functional Programming
Imperative programming (C, Java, Python, . . . ) is a programming
model that corresponds to the von Neumann computer:

I A program is a sequence of statements.
In other words, a program is a recipe that gives a step-by-step
description of what to do to produce the desired result.

I Typically, the operations of imperative languages correspond to
common machine instructions.

I Control-flow (if, for, while, function calls, etc.)
Each control-flow construct can be implemented using branch,
jump, and call instructions.

I This correspondence between program operations and machine
instructions simplifies implementing a good compiler.

Functional programming (Erlang, lisp, scheme, Haskell, ML, . . . )
is a programming model that corresponds to mathematical
definitions.

I A program is a collection of definitions.
I These include definitions of expressions.
I Expressions can be evaluated to produce results.

See also: the LYSE explanation.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 6 / 26

http://learnyousomeerlang.com/introduction#what-is-erlang


Erlang Makes Parallel Programming Easier

Erlang is functional
I Each variable gets its value when it’s declared – it never changes.
I Erlang eliminates many kinds of races – another process can’t

change the value of a variable while you’re using it, because the
values of variables never change.

Erlang uses message passing
I Interactions between processes are under explicit control of the

programmer.
I Fewer races, synchronization errors, etc.

Erlang has simple mechanisms for process creation and
communication

I The structure of the program is not buried in a large number of calls
to a complicated API.

Big picture: Erlang makes the issues of parallelism in parallel
programs more apparent and makes it easier to avoid many common
pitfalls in parallel programming.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 7 / 26



Referential Transparency

This notion that a variable gets a value when it is declared and
that the value of the variable never changes is called referential
transparency.

I You’ll here me use the term many times in class – I thought it would
be a good idea to let you know what it means. ,

We say that the value of the variable is bound to the variable.
Variables in functional programming are much like those in
mathematical formulas:

I If a variable appears multiple places in a mathematical formula, we
assume that it has the same value everywhere.

I This is the same in a functional program.
I This is not the case in an imperative program. We can declare x on

line 17; assign it a value on line 20; and assign it another value on
line 42.

I The value of x when executing line 21 is different than when
executing line 43.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 8 / 26



Loops violate referential transparency

// vector dot-product
sum = 0.0;
for(i = 0; i < a.length; i++)

sum += a[i] * b[i];

// merge, as in merge-sort
while(a != null && b != null) {

if(a.key <= b.key) {
last->next = a;
last = a;
a = a->next;
last->next = null;

} else {
...

}
}

Loops rely on changing the values of variables.
Functional programs use recursion instead.
See also the LYSE explanation.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 9 / 26

http://learnyousomeerlang.com/recursion#hello-recursion


Life without loops

Use recursive functions instead of loops.

dotProd([], []) -> 0;
dotProd([A | Atl], [B | Btl]) -> A*B + dotProd(Atl, Btl).

Functional programs use recursion instead of iteration:
dotProd([], []) -> 0;
dotProd([A | Atl], [B | Btl]) -> A*B + dotProd(Atl, Btl).

Anything you can do with iteration can be done with recursion.
I But the converse is not true (without dynamically allocating data

structures).
I Example: tree traversal.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 10 / 26



Example: Sorting a List

The simple cases:
I Sorting an empty list: sort([]) ->

I Sorting a singleton list: sort([A]) ->

How about a list with more than two elements?
I Merge sort?
I Quick sort?
I Bubble sort (NO WAY! Bubble sort is DISGUSTING!!!).

Let’s figure it out.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 11 / 26



Merge sort: Erlang code

If a list has more than one element:
I Divide the elements of the list into two lists of roughly equal length.
I Sort each of the lists.
I Merge the sorted list.

In Erlang:
sort([]) -> [];
sort([A]) -> [A];
sort([A | Tail]) ->

{L1, L2} = split([A | Tail]),
L1 sorted = sort(L1),
L2 sorted = sort(L2),
merge(L1 sorted, L2 sorted).

Now, we just need to write split, and merge.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 12 / 26



split(L)

Identify the cases and their return values according to the shape of L:

% If L is empty (recall that split returns a tuple of two lists):

split([]) -> { , }
% If L

split( ) ->

% If L

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 13 / 26



Finishing merge sort

An exercise for the reader – see slide 29.
Sketch:

I Write merge(List1, List2) -> List12 – see slide 30
I Write an Erlang module with the sort, split, and merge

functions – see slide 31
I Run the code – see slide 33

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 14 / 26



Fun with functions

Programming with patterns
I often, the code just matches the shape of the data
I like CPSC 110, but pattern matching makes it obvious
I see slide 16

Fun expressions
I in-line function definitions
I see slide 17

Higher-order functions
I encode common control-flow patterns
I see slide 18

List comprehensions
I common operations on lists
I see slide 19

Tail call elimination
I makes recursion as fast as iteration (in simple cases)
I see slide 20

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 15 / 26



Programming with Patterns

% leafCount: count the number of leaves of a tree represented by a nested list
leafCount([]) -> 0; % base case – an empty list/tree has no leaves

leafCount([Head | Tail]) -> % recursive case
leafCount(Head) + leafCount(Tail);

leafCount( Leaf) -> 1; % the other base case – Leaf is not a list

Let’s try it
2> examples:leafCount([1, 2, [3, 4, []], [5, [6, banana]]]).
7

Notice how we used patterns to show how the recursive structure
of leafCount follows the shape of the tree.
See Pattern Matching in Learn You Some Erlang for more
explanation and examples.
Style guideline: if you’re writing code with lots of if’s hd’s, and
tl’s, you should think about it and see if using patterns will make
your code simpler and clearer.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 16 / 26

http://learnyousomeerlang.com/syntax-in-functions#pattern-matching
http://learnyousomeerlang.com


Anonymous Functions
3> fun(X, Y) -> X*X + Y*Y end. % fun . . . end creates an “anonymous function”
#Fun<erl eval.12.52032458> % ok, I guess, but what can I do with it?!
4> F = fun(X, Y) -> X*X + Y*Y end.
#Fun<erl eval.12.52032458>
5> F(3, 4).
25
6> Factorial = % We can even write recursive fun expressions!

fun Fact(0) -> 1;
Fact(N) when is integer(N), N > 0 -> N*Fact(N-1)

end.
7> Factorial(3).
6
8> Fact(3).

* 1: variable ’Fact’ is unbound
9> Factorial(-2).

** exception error: no function clause matching
erl eval:’-inside-an-interpreted-fun-’(-2)

10> Factorial(frog).

** exception error: no function clause matching
erl eval:’-inside-an-interpreted-fun-’(frog)

See Anonymous Functions in Learn You Some Erlang for more explanation
and examples.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 17 / 26

http://learnyousomeerlang.com/higher-order-functions#anonymous-functions
http://learnyousomeerlang.com


Higher-Order Functions
lists:map(Fun, List) apply Fun to each element of List
and return the resulting list.

11> lists:map(fun(X) -> 2*X+1 end, [1, 2, 3]).
[3, 5, 7]

lists:fold(Fun, Acc0, List) use Fun to combine all of
the elements of List in left-to-right order, starting with Acc0.

12> lists:foldl(fun(X, Y) -> X+Y end, 100, [1, 2, 3]).
106

For more explanation and examples:
I See Higher Order Functions in Learn You Some Erlang.
I See the lists module in the Erlang standard library. Examples

include
F all(Pred, List): true iff Pred evaluates to true for every

element of List.
F any(Pred, List): true iff Pred evaluates to true for any element

of List.
F foldr(Fun, Acc0, List): like foldl but combines elements in

right-to-left order.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 18 / 26

http://learnyousomeerlang.com/higher-order-functions
http://learnyousomeerlang.com
http://erlang.org/doc/man/lists.html


List Comprehensions

Map and filter are such common operations, that Erlang has a
simple syntax for such operations.
It’s called a List Comprehension:

I [Expr || Var <- List, Cond, ...].
I Expr is evaluated with Var set to each element of List that satisfies

Cond.
I Example:

13>R = count3s:rlist(5, 1000).
[444,724,946,502,312].
14>[X*X || X <- R, X rem 3 == 0].
[197136,97344].

See also List Comprehensions in LYSE .

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 19 / 26

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/01-04/code.html
http://learnyousomeerlang.com/starting-out-for-real#list-comprehensions
http://learnyousomeerlang.com


Head vs. Tail Recursion

I wrote two versions of computing the sum of the first N natural
numbers:

sum h(0) -> 0; % “head recursive”
sum h(N) -> N + sum h(N-1).

sum t(N) -> sum t(N, 0).
sum t(0, Acc) -> Acc; % “tail recursive”
sum t(N, Acc) -> sum t(N-1, N+Acc).

Here are some run times that I measured:

N thead ttail N thead ttail

1K 21µs 13µs 1M 21ms 11ms
10K 178µs 114µs 10M 1.7s 115ms

100K 1.7ms 1.1ms 100M 28s 1.16s
1G > 8 min 11.6s

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 20 / 26



Head vs. Tail Recursion – Comparison
Both grow linearly for N ≤ 106.

I The tail recursive version has runtimes about 2/3 of the
head-recursive version.

For N > 106,
I The tail recursive version continues to have run-time linear in N.
I The head recursive version becomes much slower than the tail

recursive version.
The Erlang compiler optimizes tail calls

I When the last operation of a function is to call another function, the
compiler just revises the current stack frame and jumps to the entry point of
the callee.

I The compiler has turned the recursive function into a while-loop.
I Conclusion: When people tell you that recursion is slower than

iteration – don’t believe them.
The head recursive version creates a new stack frame for each
recursive call.

I I was hoping to run my laptop out of memory and crash the Erlang runtime
– makes a fun, in-class demo.

I But, OSX does memory compression. All of those repeated stack frames
are very compressible. The code doesn’t crash, but it’s very slow.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 21 / 26



Tail Call Elimination – a few more notes
I doubt we’ll have time for this in lecture. I’ve included it here for
completeness.
Can you count on your compiler doing tail call elimination:

I In Erlang, the compiler is required to perform tail-call elimination.
We’ll see why on Monday.

I In Java, the compiler is forbidden from performing tail-call
elimination. This is because the Java security model involves
looking back up the call stack.

I gcc performs tail-call elimination when the -o flag is used.
Is it OK to write head recursive functions?

I Yes! Often, the head-recursive version is much simpler and easier
to read. If you are confident that it won’t have to recurse for millions
of calls, then write the clearer code.

I Yes! Not all recursive functions can be converted to tail-recursion.
F Example: tree traversal.
F Computations that can be written as “loops” in other languages have

tail-recursive equivalents.
F But, recursion is more expressive than iteration.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 22 / 26



Summary

Why Erlang?
I Functional – avoid complications of side-effects when dealing with

concurrency.
I But, we can’t use imperative control flow constructions (e.g. loops).

F Design by declaration: look at the structure of the data.
F More techniques coming in upcoming lectures.

Sequential Erlang
I Lists, tuple, atoms, expressions
I Using structural design to write functions: example sorting.
I Functions: patterns, higher-order functions, head vs. tail recursion.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 23 / 26



Preview

January 9: Processes and Messages
Reading: Learn You Some Erlang, Higher Order Functions and

The Hitchhiker’s Guide. . . through More on Multprocessing
Homework: Homework 1 goes out (due Jan. 18) – Erlang programming
Mini-Assignment: Mini-Assignment 1 due 10:00am

Mini-Assignment 2 goes out (due Jan. 13)
January 11: Reduce

Reading: Learn You Some Erlang, Errors and Exceptions through
A Short Visit to Common Data Structures

January 13: Scan
Reading: Lin & Snyder, chapter 5, pp. 112–125
Mini-Assignment: Mini-Assignment 2 due 10:00am

January 16: Generalized Reduce and Scan
Homework: Homework 1 deadline for early-bird bonus (11:59pm)

Homework 2 goes out (due Feb. 1) – Reduce and Scan
January 18: Reduce and Scan Examples

Homework: Homework 1 due 11:59pm
January 20–27: Parallel Architecture
January 29–February 6: Parallel Performance
February 8–17: Parallel Sorting

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 24 / 26

http://learnyousomeerlang.com
http://learnyousomeerlang.com/higher-order-functions
http://learnyousomeerlang.com/the-hitchhikers-guide-to-concurrency
http://learnyousomeerlang.com/more-on-multiprocessing
http://learnyousomeerlang.com
http://learnyousomeerlang.com/errors-and-exceptions
http://learnyousomeerlang.com/a-short-visit-to-common-data-structures


Review Questions
What is the difference between == and =:= ?
What is an atom?
Which of the following are valid Erlang variables, atoms, both, or
neither?
Foo, foo, 25, ’25’, ’Foo foo’,

"4 score and 7 years ago", X2,
’4 score and 7 years ago’.
Draw the tree corresponding to the nested list

[X, [[Y, Z], 2, [A, B+C, [], 23]], 14, [[[8]]]].
What is referential transparency?
Why don’t functional languages have loops?
Use an anonymous function and lists:filter to implement
the body of GetEven below:

% GetEven(List) -> Evens, where Evens is a list consisting of all
% elements of List that are integers and divisible by two.
% Example: GetEven([1, 2, frog, 1000]) -> [2, 1000]
GetEven(List) ->

you write this part.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 25 / 26



A Few More Review Questions

Use a list comprehension to implement to body of Double below:
% Double(List) -> List2, where List is a list of numbers, and
% List2 is the list where each of these are doubled.
% Example: Double([1, 2, 3.14159, 1000]) ->
% [2, 4, 6.28318, 2000]
Double(List) ->

you write this part.

Use a list comprehension to write the body of Evens as described
on the previous slide.
What is a tail-recursive function?
In general, which is more efficient, a head-recursive or a
tail-recursive implementation of a function? Why?

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 26 / 26



Supplementary Material

The remaining material is included in the web-version of these slides:
http://www.ugrad.cs.ubc.ca/˜cs418/2016-2/lecture/01-06/slides.pdf

I’m omitting it from the printed handout to save a few trees.
Erlang resources.
Finishing the merge sort example.
Common mistakes with lists and how to avoid them.
A few remarks about atoms.
Suppressing verbose output when using the Erlang shell.
Forgetting variable bindings (only in the Erlang shell).
Table of Contents.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 27 / 26

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/lecture/01-06/slides.pdf


Erlang Resources

LYSE – you should be reading this already!
Install Erlang on your computer

I Erlang solutions provides packages for Windows, OSX, and the
most common linux distros
https://www.erlang-solutions.com/resources/download.html

I Note: some linux distros come with Erlang pre-installed, but it might be an old
version. You should probably install from the link above.

http://www.erlang.org
I Searchable documentation

http://erlang.org/doc/search/
I Language reference

http://erlang.org/doc/reference_manual/users_guide.html
I Documentation for the standard Erlang library

http://erlang.org/doc/man_index.html

The CPSC 418 Erlang Library
I Documentation

http://www.ugrad.cs.ubc.ca/˜cs418/resources/erl/doc/index.html
I .tgz (source, and pre-compiled .beam)

http://www.ugrad.cs.ubc.ca/˜cs418/resources/erl/erl.tgz

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 28 / 26

http://learnyousomeerlang.com
https://www.erlang-solutions.com/resources/download.html
http://www.erlang.org
http://erlang.org/doc/search/
http://erlang.org/doc/reference_manual/users_guide.html
http://erlang.org/doc/man_index.html
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/index.html
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/erl.tgz


Finishing the merge sort example

Write merge(List1, List2) -> List12 – see slide 30
Write an Erlang modle with the sort, split, and merge
functions – see slide 31
Run the code – see slide 33

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 29 / 26



merge(L1, L2)

Precondition: We assume L1 and L2 are each in non-decreasing
order.
Return value: a list that consists of the elements of L1 and L2 and
the elements of the return-list are in non-decreasing order.
Identify the cases and their return values.

I What if L1 is empty?
I What if L2 is empty?
I What if both are empty?
I What if neither are empty?
I Are there other cases?

Do any of these cases need to be broken down further?
Are any of these case redundant?

Now, try writing the code (an exercise for the reader).

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 30 / 26



Modules
To compile our code, we need to put it into a module.
A module is a file (with the extension .erl) that contains

I Attributes: declarations of the module itself and the functions it
exports.

F The module declaration is a line of the form:
-module(moduleName).

where moduleName is the name of the module.
F Function exports are written as:

-export([functionName1/arity1,
functionName2/arity2, ...]).
The list of functions may span multiple lines and there may be more
than one -export attribute.

arity is the number of arguments that the function
has. For example, if we define

foo(A, B) -> A*A + B.
Then we could export foo with

-export([..., foo/2, ...]).
F There are many other attributes that a module can have. We’ll skip

the details. If you really want to know, it’s all described here.
I Function declarations (and other stuff) – see the next slide

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 31 / 26

http://learnyousomeerlang.com/modules#what-are-modules
http://www.erlang.org/doc/reference_manual/modules.html


A module for sort

-module(sort).
-export([sort/1]).
% The next -export is for debugging. We’ll comment it out later
-export([split/1, merge/2]).
sort([]) -> [];
...

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 32 / 26



Let’s try it!

1> c(sort).
{ok,sort}
2> R20 = count3s:rlist(20, 100). % test case: a random list
[45,73,95,51,32,60,92,67,48,60,15,21,70,16,56,22,46,43,1,57]
3> S20 = sort:sort(R20). % sort it
[1,15,16,21,22,32,43,45,46,48,51,56,57,60,60,67,70,73,92,95]
4> R20 -- S20. % empty if each element in R20 is in S20
[]
5> S20 -- R20. % empty if each element in S20 is in R20
[]

Yay – it works!!! (for one test case)
The code is available at
http://www.ugrad.cs.ubc.ca/˜cs418/2016-2/lecture/01-06/src/sort.erl

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 33 / 26

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/lecture/01-06/src/sort.erl


Remarks about Constructing Lists

It’s easy to confuse [A, B] and [A | B].
This often shows up as code ends up with crazy, nested lists; or
code that crashes; or code that crashes due to crazy, nested lists;
. . . .
Example: let’s say I want to write a function divisible drop(N,
L) that removes all elements from list L that are divisible by N:

divisible drop( N, []) -> []; % the usual base case
divisible drop(N, [A | Tail]) ->

if A rem N == 0 -> divisible filter(N, Tail);
A rem N /= 0 -> [A | divisible filter(N, Tail)]

end.

It works. For example, I included the code above in a module
called examples.

6> examples:divisible drop(3, [0, 1, 4, 17, 42, 100]).
[1,4,17,100]

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 34 / 26



Misconstructing Lists

Working with divisible drop from the previous slide. . .
Now, change the second alternative in the if to

A rem N /= 0 -> [A, divisible filter(N,
Tail)]
Trying the previous test case:

7> examples:divisible drop(3, [0, 1, 4, 17, 42, 100]).
[1,[4,[17,[100,[]]]]]

Moral: If you see a list that is nesting way too much, check to see
if you wrote a comma where you should have used a |.
Restore the code and then change the second alternative for
divisible drop to divisible drop(N, [A, Tail])
-> Trying our previous test:

8> examples:divisible drop(3, [0, 1, 4, 17, 42, 100]).

** exception error: no function clause matching...

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 35 / 26



Punctuation
Erlang has lots of punctuation: commas, semicolons, periods, and
end.
It’s easy to get syntax errors or non-working code by using the
wrong punctuation somewhere.
Rules of Erlang punctuation:

I Erlang declarations end with a period: .
I A declaration can consist of several alternatives.

F Alternatives are separated by a semicolon: ;
F Note that many Erlang constructions such as case, fun, if, and

receive can have multiple alternatives as well.
I A declaration or alternative can be a block expression

F Expressions in a block are separated by a comma: ,
F The value of a block expression is the last expression of the block.

I Expressions that begin with a keyword end with end
F case Alternatives end
F fun Alternatives end
F if Alternatives end
F receive Alternatives end

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 36 / 26



Remarks about Atoms
An atom is a special constant.

I Atoms can be compared for equality.
I Actually, any two Erlang can be compared for equality, and any two

terms are ordered.
I Each atom is unique.

Syntax of atoms
I Anything that looks like an identifier and starts with a lower-case

letter, e.g. x.
I Anything that is enclosed between a pair of single quotes, e.g. ’47
BIG apples’.

I Some languages (e.g. Matlab or Python) use single quotes to
enclose string constants, some (e.g. C or Java) use single quotes
to enclose character constants.

F But not Erlang.
F The atom ’47 big apples’ is not a string or a list, or a character

constant.
F It’s just its own, unique value.

I Atom constants can be written with single quotes, but they are
not strings.

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 37 / 26



Avoiding Verbose Output

Sometimes, when using Erlang interactively, we want to declare a
variable where Erlang would spew enormous amounts of
“uninteresting” output were it to print the variable’s value.

I We can use a comma (i.e. a block expression) to suppress such
verbose output.

I Example
9> L1 to 5 = lists:seq(1, 5).
[1, 2, 3, 4, 5].
10> L1 to 5M = lists:seq(1, 5000000), ok.
ok
11> length(L1 to 5M).
5000000
12>

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 38 / 26



Forgetting Bindings

Referential transparency means that bindings are forever.
I This can be nuisance when using the Erlang shell.
I Sometimes we assign a value to a variable for debugging purposes.
I We’d like to overwrite that value later so we don’t have to keep

coming up with more name.s
In the Erlang shell, f(Variable). makes the shell “forget” the
binding for the variable.

12> X = 2+3.
5.
13> X = 2*3.

** exception error: no match of right hand side value 6.
14> f(X).
ok
15> X = 2*3.
6
16>

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 39 / 26



Table of Contents

Erlang Basics – basic types and their operations.
Functional Programming – referential transparency, recursion instead of
loops.
Example: Merge Sort
Fun with functions – patterns, anonymous functions, higher-order
functions, list comprehensions, head vs. tail recursion
Preview of upcoming lectures
Review of this lecture
Supplementary Material

Mark Greenstreet Introduction to Erlang CS 418 – Jan. 6, 2016 40 / 26


