
CPSC 418: Parallel Computing Winter 2016–2017 Term 2
Homework #5 c© 2017 by Devon Graham and Chenxi Liu

Homework #5 Solution Set

1. 1D Convolution - code (35 points)

(a) Solution:
conv1h basic(): In addition to making the call to the CUDA kernel, this function takes care
of all the usual CUDA memory allocation and copying. Note the call to cudaMemcpyToSymbol

that copies the stencil into constant memory. We are using a 1D block of threads, since we are
performing the convolution using a 1D stencil. We use a 2D grid of blocks, where the y-dimension
is height, since our blocks are 1D, and the x-dimension is calculated to contain enough blocks to
cover a full row of pixels of the image.
conv1h basic kernel(): Our job is to calculate the value of a single pixel by applying the
convolution stencil to the pixels around it. x and y will represent the coordinates of the pixel we
are calculating (note that, since we are using 1D blocks, blockIdx.y will be 0, and hence the
abbreviated declaration of y). We just loop over the stencil, making sure to not include values
that fall outside the current row of the image. cur x represents where in the image array the
stencil is currently being applied, while image offset represents the corresponding pixel of the
image. So we check to make sure that we are within the bounds of the current row of the image
(cur x >= 0 && cur x < width), and if so, we multiply the value of the pixel with that of the
stencil, and add the result to the sum variable. Finally, we write the value of sum into the pixel
at coordinates x,y.

(b) Solution:
conv1v basic(): As above, this function does all the CUDA memory setup and then calls the
kernel. Again, we use a 1D block of threads, and a 2D grid of blocks. Whereas above we had one
block for each row of the image, here we have one block for each column of the image (i.e., the
grid’s y-dimension is width). Again, the x-dimension is calculated to contain enough blocks to
cover a full column of pixels of the image.
conv1v basic kernel(): The code structure is identical to conv1h basic kernel() above. Here,
we use the clever trick of swapping the x and y variables. Now we can use y to represent the
current column, and x to represent the current row. Again, cur y represents where in the image
array the stencil is currently being applied and image offset represents the corresponding pixel
of the image. Note that the index calculation for image offset is done differently from above,
due to the swapping of x and y, but it still follows the common 2D indexing pattern of “y *

width + x”.

(c) Solution:
conv1to2 basic(): This function should be easy once you have conv1h basic kernel() and
conv1v basic kernel() working. We basically just combine the code in the two functions
conv1h basic() and conv1v basic(). We do all of the memory allocations and set up two
thread grids, gridDim h and gridDim v, using the same parameters as in (a) and (b). We then
simply make sequential calls to conv1h basic kernel() and conv1v basic kernel(). To avoid
unnecessary memory allocations, we use the input array to conv1h basic kernel() as the output
array for conv1v basic kernel().

2. 1D Convolution - performance (20 points)

(a) Solution:
Here is a simple, naive (slightly incorrect) approach: For the horizontal stencil, there are a total
of h · w pixel values to calculate. For each such pixel we loop over the stencil and perform one
multiplication and one addition. Thus, for the horizontal stencil we perform 2hwsx operations.
Similarly, the vertical stencil we perform 2hwsy operations, for a total of 2hw(sx+sy) operations.

1

(b) Solution:
Again, here is a naive approach: For the horizontal kernel, for each of the h · w pixels, and for
each of the sx elements of the stencil, we read a pixel of the input from global memory. That’s a
total of sx memory reads for each pixel of the input image. Then, we need to write the computed
value back to global memory. That’s a total of hw(sx + 1) global memory accesses. Similarly, the
vertical kerne makes hw(sy + 1) accesses, for a total of hw(sx + sy + 2)

(c) Solution:
CGMA is calculated as Number of operations for computation

Number of global memory accesses . Thus, CGMA is just the ratio of the

results from the previous two questions. That is
2hw(sx+sy)
hw(sx+sy+2) =

2(sx+sy)
sx+sy+2

(d) Solution:
Throughput is being measured in pixels/second. The booby.ppm image is 1071 × 1850, so has
1981350 pixels. Thus, if T is the time in seconds to execute conv1to2 basic(), the throughput
would be 1981350

T pixels/second.

3. 1D Convolution with Tiling (45 points)

(a) Solution:
conv1h tiled kernel(): As with tiled versions of other functions we’ve seen, the kernel compu-
tation proceeds in two stages. In the first stage, data is collaboratively loaded by each thread into
the block’s shared memory. In the second stage, threads use the data stored in shared memory
to compute the convolution for pixels they are responsible for.

Since the current block needs data that falls outside the portion of the array it is responsi-
ble for calculating, we need to also load a “halo” into shared memory. halo left start and
halo right end represent the boundaries of the entire portion of the array to be loaded into
memory.

Then in the first loop of the kernel, the current thread iterates over the array from halo left start

to halo right end, checks that the current index falls within the current row of the image, and
then loads the value of the pixel it finds there into s inputs in shared memory. It takes steps of
size BLOCK SIZE X so that each block loads a contiguous portion of the image at a time.

After this first loop, the current thread has loaded all its data into s inputs. We have to wait
at the syncthreads() before continuing, to make sure that all the other threads in this block
have also finished loading their values. At this point, calculating the value of the convolution for
a single pixel is done in a manner completely analogous to the non-tiled version, except now the
data is read from shared memory.

conv1v tiled kernel(): We follow exactly the same pattern as with conv1h tiled kernel(),
and make the same indexing alterations as we made when going from conv1h basic() to conv1v basic().

conv1to2 tiled: As with conv1to2 basic, we just need to combine the code from conv1h tiled

and conv1v tiled into a single function. As before, we have two blockDim and gridDim structs,
one for each kernel call, and we use the input array to conv1h tiled kernel() as the output
array for conv1v tiled kernel().

(b) Solution:
Assume the tile and its corresponding block are 1D in this subquestion since there is a trivial
mapping between K&H and the implementation in this subquestion.

First, let’s compute the global memory accesses.

(1) Consider moving elements from the global memory into the shared memory within one block
in conv1h tiled kernel(). K&H figure 8.10 (in the second edition) or 7.10 (in the third
edition) is a good illustration.
Three types of elements are move: left halo element, right halo element and middle elements.
The number of elements belonging to the two halos is sx−1 in total. The number of elements
in the middle is the size of the tile t. For one tile (or one block), there are sx + t − 1 global
memory accesses to move elements into the shared memory.

2

These elements in shared memory are used to compute t results in the middle part. There
are t global memory accesses to write results back.
Therefore, the number of global memory accesses in a tile is sx + 2t− 1.

(2) Consider tiles (or blocks) in one image row.
There are dwt e tiles. To simplify the result, we don’t subtract elements outside the image
boundary and the total global memory accesses in a row is dwt e(sx + 2t− 1).

(3) Consider tiles (or blocks) in the whole image.
Since the stencil is 1D in this case, computations in different rows are independent to each
other. It is equivalent to run h 1D tiled convolutions on each row in parallel. Thus, the overall
global memory accesses is hdwt e(sx + 2t− 1).

Now, let’s consider floating point operations in the similar per-tile fashion.

In each tile, there are t pixels in the middle and similar to Q2(a), each one requires 2sx computa-
tions. So there are 2sx · t operations per tile. In each row, the number of operations is 2dwt esx · t.
Therefore, the number of operations in the whole image is 2hdwt esx · t.
By replacing sx with sy and swapping w and h, you should get the result for the horizontal
direction.

The CGMA is

2hdwt esx · t+ 2wdht esy · t
hdwt e(sx + 2t− 1) + wdht e(sy + 2t− 1)

.

(c) Solution:
The throughput calculation is the same as for Question 2 (d).

4. cuBLAS (40 points)

(a) Solution:
The three BLAS subroutines are (1) cublasSgemv, (2) cublasSnrm2, (3) cublasSscal.

(b) Solution:
See hw5 blas.cu.

(c) Solution:
Measured on lin21, the runtime of the power iteration computation is 8.800e-02 s and the
runtime including the memory operations (cudaMallc, cudaFree and memory movement between
CPU and GPU) is 1.760e-01 s.

(d) Solution:
For this subquestion, we only consider the power iteration computation time (8.800e-02 s). If
the kernel uses this runtime only for global memory accesses only, the number of single precision
floating point values it touches is

98.2× 230 × 0.088

4
= 2.32× 109.

(e) Solution:
Given A is a n× n matrix and b is a n dimensional vector, consider a single iteration.

(1) b← Ab.
For each element in the resulting b, the total number of additions and multiplications is 2n−1
and we round it to 2n. Thus, the total number is roughly 2n2.

(2) λ← ||b||.
Given the 2-norm is defined as

√∑n
i=1 b

2
i , the total number of additions and multiplications

is rounded to 2n. There is one square root operation per iteration. Since the runtime is
dominated by the 2n additions and multiplications, we omit the single square root operation.

3

(3) b← (1
λ)b.

There are n multiplications.

The numbers above sum up to 2n2 + 3n per iteration. Running these steps for k iterations gives
k(2n2 + 3n) floating point operations. Plugging in k = 500, n = 2048 gives 4197376000.

(f) Solution:
The kernel uses the runtime for not only global memory accesses but also computations. However,
since the actual code is hidden inside BLAS library, we can only obtain a low bound on CGMA
by assuming the kernel uses all the runtime for global memory accesses. Then, CGMA is lower
bounded by

4197376000

2.32× 109
= 1.81.

Note (added by Mark): This problem is built on BLAS level-2 functions. In particular, it performs
repeated matrix-vector multiply. Each matrix-vector product is performed by a separate kernel.
This means that the matrix must be loaded from global memory for each product. Each matrix
element is used in one multiply-add when performing a matrix-vector product. Thus we get one
multiply, and one add per memory read, just for the matrix. This would give a CGMA of 2. The
measured 1.8 number suggests that the cuBLAS library gets pretty close to this limit. It also says
that the performance of the cuBLAS functions for this problem is limited by the GPU’s memory
bandwidth – the huge floating-point throughput of the GPU isn’t being exercised. Kind of like
SAXPY.

Reading the matrix involves many more memory operations than reading the vector, or storing
the final result. We can surmise that the cuBLAS function loads the vector into on-chip memory
because each element of an N -element vector is accessed N times when multiplying the vector
by an N -by-N matrix, and I’m assuming that the cuBLAS programmers write better code that
I do. This suggests that the cuBLAS code performs N2 memory reads to access the matrix, and
N reads to load the vector, and N writes to write the result. The N2 memory accesses for the
matrix dominate the 2N accesses for the vector. This justifies the focus on the accessing the
matrix elements in the previous paragraph.

4

