
CPSC 418: Parallel Computing Winter 2016–2017 Term 2
Due 11:59 on April 7, 2017. c© 2017 by Mark Greenstreet & Ian M. Mitchell
Early bird 11:59 on April 5, 2017.

Homework #5: More Fun with CUDA

Please submit your solution using the handin program. Submit your solution as

cs418 hw5

Your submission should consist of three files:

• hw5 conv.cu: CUDA source code for your solution to the coding parts of the con-
volution problems.

• hw5 blas.cu: CUDA source code for your solution to the coding parts of the power
iteration problem.

• hw5.pdf: PDF for the written response parts of your solution

If your code does not compile, we might give you zero points for the problem. Points will
be deducted for compiler warnings.

An archive containing the necessary source code and separate archives for the data files
for this assignment are available at

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/5/code.html.

Note that the data files are very large. If you are working on the linXX boxes, see the
instructions at the end of this assignment for how to symbolically link to our copy of these
files rather than making your own copy.

1. 1D Convolution – code (35 points): In this question you will write and test
simple 1D convolution kernels that make use of another specialized class of GPU
memory called “constant memory.” Before starting this question, be sure to

• Read K&H sections 8.1–8.3 or 7.1–7.3 respectively.

• Download and make the template convolution code. For instructions on how
to do so, see the end of the assignment. All functions referred to below are in
the file hw5 conv.cu and this is the only file you should modify.

1

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/5/code.html

For this question, you goal is to get working implementations of convolution. You
don’t need to worry about optimizing your code—we’ll save that for Question 3.

(a) (15 points): In the file hw5 conv.cu the sample code conv1h basic() loads the
input image, copies it into global GPU memory, launches conv1h kernel(),
copies the result back to the CPU memory and saves it as an output image.
The sample kernel code conv1h basic kernel() creates the photo-negative of
the input image.

Modify conv1h basic() and conv1h basic kernel() to implement a 1D con-
volution of the image in the horizontal direction by the convolution stencil
specified in the global variable hos stencil 1dx. To improve performance,
you should store the stencil data in the GPU’s constant memory.

You will find the code in K&H figure 8.8 or 7.8 useful for this question, but keep
in mind that the input data is a two dimensional array. If you are successful,
your output image should show a noticeable horizontal blurring.

(b) (10 points): Write the function conv1v basic() and kernel conv1v basic kernel()

which implements a 1D convolution of the image in the vertical direction by the
convolution stencil specified in the global variable hos stencil 1dy. Your code
for this part should be similar but not identical to your code for the previous
part. You should use the GPU’s constant memory for the stencil data. Check
that your output image shows a noticeable vertical blurring.

(c) (10 points): Write the function conv1to2 basic() which implements a 2D
convolution of the image by performing a 1D horizontal convolution followed
by a 1D vertical convolution. You should use the kernels you developed in the
previous two parts. Check that your output image shows a noticeable blurring
in both directions.

2. 1D Convolution – performance (20 points): In this problem, you will perform
some simple performance analysis of conv1to2 basic from Question 1. As noted
in that question, the goal in the simple implementation is just to get working code.
You don’t need to worry getting good performance, you just need to understand the
performance. You should be sure to read section 8.1 of Kirk’s & Hwu’s 2nd edition
or section 7.1 of the 3rd edition.

(a) (5 points): How many floating point operations (i.e. the total number of mul-
tiplications plus the total number of additions) does your implementation of
conv1to2 basic perform to compute the 2D convolution of an image with h
rows and w columns using a stencil with sx elements in the horizontal direction
and a stencil with sy elements in the vertical direction? Your answer should
be stated in terms of h, w, sx and/or sy. You may assume that sy < h and
sx < w.

(b) (5 points): With the same assumptions as the previous part, how many global
memory accesses does your implementation of conv1to2 basic perform? You
may assume that the stencil data is successfully cached and so does not require
any global memory access.

2

(c) (5 points): With the same assumptions as the previous parts, what is the
CGMA for your implementation of conv1to2 basic?

(d) (5 points): What is the throughput of your implementation of conv1to2 basic

in pixels/second when using booby.ppm as the source image?

Note: Even if you do not have a working solution to conv1to2 basic you may
answer these questions based on your solution for conv1h basic or conv1v basic.
To receive credit, you must clearly state that you are doing so in your solution.

3. 1D Convolution with Tiling (45 points): In this question you will improve the
throughput of your convolution kernels using tiling. Before starting this question,
be sure to read section 8.4 or 7.4 respectively.

For this question, you should try to get reasonably good performance. Given the
time constraints of this assignment, we aren’t asking you to push for the absolute
highest performance possible.

(a) (30 points) Create functions conv1to2 tiled(), conv1h tiled kernel() and
conv1v tiled kernel() to implement a 2D convolution of the image using
1D tiles of size t in shared memory to reduce the number of global memory
accesses. You should try to achieve a reasonably good throughput, for example,
as measured in pixels/second.

You will find the code in K&H figure 8.11 or 7.11 useful for this question,
but keep in mind that the input data is a two dimensional array. If you are
successful, your output image should look the same as the final output image
from the previous question.

(b) (5 points): Under the same assumptions as the previous question, approxi-
mately what ratio of global memory accesses to arithmetic operations does
your code achieve as a function of h, w, sx, sy and t? You may assume that the
convolution stencil data is successfully cached, and so does not require global
memory access. You may also place constraints on the size of t (for example,
max(sx, sy) < t < max(h,w) are obvious bounds), but do not assume that t is
constant.

(c) (10 points): What throughput, in pixels/second, does your kernel achieve?
Describe the performance trade-offs that you considered to achieve this perfor-
mance.

4. cuBLAS (40 points). The power method or power iteration is a simple algorithm
for finding the dominant (largest) eigenvalue and corresponding eigenvector of a
matrix. For a matrix A, let λ denote the largest eigenvalue and v the corresponding
eigenvector.

The power method starts with a vector b0, which technically must satisfy vT b0 6= 0
but for practical purposes is usually chosen randomly. The method then iterates the
formula

bk+1 =
Abk
‖Abk‖

, (1)

3

where ‖x‖ denotes the two-norm of a vector x. Then bk will converge to v and ‖Abk‖
will converge to |λ| if |λ| is strictly larger than the magnitude of any other eigenvalue
of A.

Note that the iteration (1) can be decomposed into the steps

b← Ab

λ← ‖b‖
b← (1/λ)b

(2)

which can be repeated as desired.

(a) (5 points): What are the BLAS subroutines for each of the three steps in (2)?

(b) (15 points): In the file hw5 blas.cu complete the function power method()

using calls to the cuBLAS library. You may assume that the input matrix and
vector satisfy the appropriate mathematical requirements for convergence.

(c) (5 points): Test your function on the provided data using k = 500 iterations of
the power method. How long does your code take to estimate the eigenvalue of
a matrix that is n× n for n = 2048?

(d) (5 points): The linXX machines have nVidia GTX 550 Ti GPUs. These GPUs
have a maximum memory bandwidth of 98.2 Gbytes per second. Given the
time that you measured to run your code, what is the maximum number of
single precision floating point values that could be loaded from global memory
on these GPUs?

(e) (5 points): Assume that the cuBLAS routines perform the same number of
floating point operations as the brute-force algorithm—the cuBLAS routines
just arrange these operations to make good use of the GPU. How many floating
point operations (i.e. the total number of multiplications plus the total number
of additions) are needed to run k iterations of (1) on a matrix of size n× n?

(f) (5 points): Use your answers to the previous two parts of this question to
compute a lower bound on the CGMA that your algorithm based on cuBLAS
achieves when estimating the maximum eigenvalue of a matrix with n = 2048
and k = 500 iterations.

The Convolution Template Code

To build the project, call make clean; make under the homework folder. If the code
compiles, this should generate a binary hw5 conv.

The sample images for this question are large. If you are working on the linXX machines,
we recommend that you create a link to our copy of these files rather than copying them

4

into your own directory. To create a (symbolic) link to our image directory in your current
directory, use the command

ln -s ∼cs418/public html/2016-2/hw/5/images .

Note that there is a space between “/images” and the final “.” in this command. You
should then be able to access the stippling.ppm image file as images/stippling.ppm.

For the questions involving convolution, you will only be modifying a subset of the code
in the file hw5 conv.cu; the sections which must be modified are flagged with “TODO”. Do
not modify any of the other source files, the makefile, or any of the code in
hw5 conv.cu below the “No change to code after this point” comment. If your
code in hw5 conv.cu fails to compile with the other provided source files and makefile,
you may receive zero on the related questions.

The homework comes with several test cases in PPM image format: checker20.ppm,
checker40.ppm, booby.ppm, stippling.ppm which can be accessed by symbolic link using
the instructions above or downloaded. The two checker cases are small images (40x40).
We recommend you debug your code on these small images before moving on to larger
images.

The binary hw5 conv contains several options. Here are explanations with examples (for
additional details, call ./hw5 conv without any arguments):

• Basic execution of a convolution kernel:

./hw5 conv -f ./result.ppm -c 1 ./images/stippling.ppm

This command would take ./images/stippling.ppm as the input, run conv1v basic

(specified by -c) on it and write to ./result.ppm (specified by -f). Here is a
list of -c options: 0: conv1h basic; 1: conv1v basic; 2: conv1to2 basic; 3:
conv1h tiled; 4: conv1v tiled; 5: conv1to2 tiled.

• Running a convolution with a specified sigma value:

./hw5 conv -f ./result.ppm -c 1 -s 5 ./images/stippling.ppm

Here the sigma is 5 (specified by -s). It controls the convolution stencil and hence
the degree of blurring. The larger the value, the blurrier the result. Your code will
be tested only with the default value for sigma.

• Running a convolution for multiple iterations:

./hw5 conv -f ./result.ppm -c 1 -n 1000 ./images/stippling.ppm

This command would repeat the operation 1000 times (specified by -n). This option
is provided to improve timing estimates when running small images.

5

• Comparing results against the reference images:

./hw5 conv -f ./diff.ppm -t -c 1 ./images/stippling.ppm

This command would take stippling.ppm as the input and run conv1v basic on it.
It would check the result against the reference image (stippling 1 ref.ppm in this
case). If your output matches the reference image, you will receive a textual success
message. Otherwise, the system will list pixels (at most 10) which disagree: <("x",
"y"), "float pixel value">, where ("x", "y") is the position of the error pixel
and "float pixel value" is the value of your output. The output file specified by
-f (./diff.ppm in this case) would be the difference image between your output
and the reference image. This option is provided to help with debugging.

Chenxi has provided a few other tips that may be useful for debugging:

• To view your results as an image on the linXX machines you can use the display

command. In order to view the results remotely, you must have support for X
Windows on your local machine. Linux and OSX machines naturally support X Win-
dows; for Windows you can download the Xmanager software from http://my.cs.ubc.ca.
Make sure you enable X forwarding through whatever ssh client you are using to
remotely connect.

• To view your results on your own machine, you will need a local viewer capable of
handling .ppm files. If the display command (part of the ImageMagick package)
is not available, the open source GIMP package, recent versions of the emacs text
editor, or the commerical Photoshop package can be used.

• If you are developing code on your own machine, you will need to adjust the library
path (specified in Makefile with the variable L DIR) so that the CUDA runtime
library cudart can be found. But be sure to test your code on the linXX machines
prior to submission, since we will be running your code on these machines for grading
purposes.

• You can call printf from CUDA kernels, but be careful—printing from all threads
may generate incomprehensible results and/or hang / crash the process.

The Power Iteration Template Code

This question involves only the file hw5 blas.cu. To build, use the command

nvcc -lcublas hw5 blas.cu -o hw5 blas

to generate the binary hw5 blas. This compilation will only work if your LD LIBRARY PATH

environment variable in your shell is set correctly; for example, on the linXX machines it

6

should include /cs/local/lib/pkg/cudatoolkit/lib64). You can see the value LD LIBRARY PATH

by typing echo $LD LIBRARY PATH at the prompt. If it does not exist or has no value, you
can set it (again on the linXX machines assuming that your account is using the default
bash shell) with the command:

export LD LIBRARY PATH=/cs/local/lib/pkg/cudatoolkit/lib64

If it has a value which does not include the CUDA path, you can add the CUDA path (again on the
linXX machines assuming that your account is using the default bash shell) with the command:

export LD LIBRARY PATH=$LD LIBRARY PATH:/cs/local/lib/pkg/cudatoolkit/lib64

You can either run the appropriate command manually every time you log in, or you can add it
to your ∼/.bashrc file so it gets run automatically every time you log in.

The sample data for this question are very large. If you are working on the linXX machines, we
recommend that you create a link to our copy of these files rather than copying them into your
own directory. To create a (symbolic) link to our image directory in your current directory, use
the command

ln -s ∼cs418/public html/2016-2/hw/5/matrix .

Note that there is a space between “/matrix” and the final “.” in this command. Once you have
the sample data in a subdirectory matrix/, a typical call will be

./hw5 blas 1024 matrix/power A 1.500 1024.data matrix/power b0 1.500 1024.data 500

The data files’ names specify either a matrix (“A”) or initial vector (“b0”), the actual maximum
eigenvalue (such as “1.500”) and the size of the matrix or vector (such as “1024”). Note that you
still need to tell hw5 blas the size of the matrix since it does not attempt to parse the data file
names.

Why?

Convolution: The convolution operation is often encountered in numerical computing, although
not always under that name; for example, the finite difference stencils widely used to approximate
derivatives when solving partial differential equations are a form of convolution. Convolution is
used in computer vision, signal processing, and many, many other problem domains.

For the purposes of this parallel computing course, convolution is a great example of a data-parallel
programming pattern. The problem gives you some experience with using tiling on a GPU—this
is critical for achieving high throughput in most GPU kernels. By getting some experience with
convolution with this problem, you’ll be more likely to recognize it when it comes up in other
contexts, and now you will know how to get started on an efficient, parallel implementation. Keep
in mind, however, that both convolution and tiling in two dimensions or higher require much more

7

detailed index manipulation. For this question we applied convolution in a very simple context—
image blurring—because it is easy to set up the problem and visualize the output, but the kernels
we developed are applicable in the much broader context.

Power Iteration: From the perspective of the course, the main purpose of this question is to
provide an opportunity to practice using the cuBLAS library. However, the power method is used
industrially, typically to find a single eigenvalue / eigenvector (or sometimes a small number of
them) for large sparse matrices because it requires nothing more than marix-vector products and
so the matrix need not be stored explicitly. A “famous” example of the sparse-matrix version is
Google’s page-ranking algorithm. For this problem, we focus on dense matrices, because it makes
the coding much simpler.

For dense matrices and large numbers of eigenvalues / eigenvectors more sophisticated methods
are usually used in practice, but we wanted to keep the problem simple. This is, after all, a
course on parallel computation. The number of iterations (matrix-vector products) needed in the
power method is inversely proportional to the size of the gap between the largest and next largest
eigenvalues, and for large matrices that gap can be very small. If a large number of iterations
is needed, roundoff error can accumulate; consequently, the power method is rarely performed in
single precision arithmetic. In order to keep things well behaved, we are carefully constructing the
test matrices for this particular problem so that the gap is relatively large and only a few iterations
are needed.

8

