
CpSc 418 Homework 4 Due: Mar. 22, 2017, 11:59pm
Early Bird: Mar. 20, 2017, 11:59pm

140 points.

Please submit your solution using the handin program. Submit your solution as
cs418 hw4

Your submission should consist of two files:

• hw4.cu: CUDA source code for the coding parts your solution.

• hw4.pdf: PDF for the written response parts of your solution

Some C functions for questions 3 and 4 are available at
http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/4/src/hw4.cu.

If your code does not compile, we might give you zero points for the problem. Points will be deducted for
compiler warnings.

1. Sorting Networks: clean and dirty sequences (35 points) This problem explores a substructure
that is commonly used in sorting networks. Let S be a sorting network with N inputs and outputs.
Let the inputs be x[0], x[1], . . . , x[N − 1], and let the outputs be y[0], y[1], . . . , y[N − 1]. The
sorting network performs a compare-and-swap between x[i] and x[(N − 1)− i] for 0 ≤ i < (N/2). In
other words,

y[0] = min(x[0], x[N − 1])
y[N − 1] = max(x[0], x[N − 1])

y[1] = min(x[1], x[N − 2])
. . .

(a) (5 points) Draw this sorting network for the case N = 10.

Of course, we will use the 0-1 principle to reason about this network. We say that a sequence of 0s
and 1s is “clean” if it consists entirely of 0s or entirely of 1s. We say that a sequence of 0s and 1s is
“dirty” if it has at least one 1 and at least one 0. Note that any clean sequence is trivially monotonic
or bitonic.
For the remainder of this problem, assume that x consists only of 0s and 1s; assume that inputs
x[0, . . . , (N/2) − 1] are sorted into ascending order; and assume that inputs x[N/2, . . . , N − 1]
are sorted into ascending order. It is not necessarily the case that x is fully sorted; in particular,
x[(N/2)− 1] may be greater than x[N/2].

(b) (10 points) Prove that either the sequence y[0, . . . , (N/2) − 1] is clean or that the sequence
y[(N/2), . . . , (N − 1)] is clean (or possibly both).

(c) (10 points) Prove that y[0, . . . , (N/2)− 1] and y[N/2, . . . , N − 1] are both bitonic sequences.
Hint: as shown in part (b), one of these sequences is clean, and therefore bitonic. You just need
to show that the other sequence is bitonic.

(d) (10 points) Prove that for 0 ≤ i < (N/2) and (N/2) ≤ j < N , y[i] ≤ y[j]. In English, this
says that every element of the lower half of y is less-than-or-equal-to any element of the top half.

1

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/4/src/hw4.cu


x[0]

x[1]

x[2]

x[3]

x[4]

x[5]
sort6.a

0 1 2 3 4 5 6 7 8

y[0]

y[1]

y[2]

y[3]

y[4]

y[5]

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]
sort6.c

0 1 2 3 4 5 6 7 8 0 1 2 3 64 5 7

y[0]

y[1]

y[2]

y[3]

y[4]

y[5]

x[0]

x[1]

x[3]

x[4]

x[2]

x[5]
sort6.b

y[0]

y[1]

y[2]

y[3]

y[4]

y[5]

x[0]

x[1]

x[3]

x[4]

x[2]

x[5]
sort6.d

1 2 3 64 50

y[0]
7

y[1]

y[2]

y[3]

y[4]

y[5]

Figure 1: Sorting Networks

2. Sorting Networks: examples (50 points) Figure 1 shows four sorting networks with six inputs:
sort6-a, sort6-b, sort6-c, and sort6-d. At least one of these networks sorts correctly, and at least one
does not.

(a) (5 points) Identify a subnetwork of one of these sorting networks that sorts two elements. To
specify a subnetwork, you can make a copy of the figure, circle the compare-and-swap elements
of the subnetwork, and label the circuit, or you can do it textually as described below.
Here’s an example of a textual description of a subnetwork:

from sort6.b % the parent network of your subnetwork
column 1: (0,2), (3,5)
column 2: (1,5)

This refers to three compare-and-swap elements from sort6.b: the compare-and-swap in column
1 spanning rows 0 and 2; the compare-and-swap in column 1 spanning rows 3 and 5; and the
compare-and-swap in column 2 spanning rows 1 and 6.
Hint: Yes, this is a very simple problem, nearly “five points just for reading”.

(b) (5 points) Identify a subnetwork of one of these sorting networks that sorts three elements.
(c) (5 points) Identify a subnetwork of one of these sorting networks that sorts four elements.
(d) (5 points) Identify a subnetwork of one of these sorting networks that has M inputs for M ≤ 6,

and combines them as described in Question 1.
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(e) (10 points) Identify one of the four networks that does not sort correctly. Label the inputs
with values of 0 or 1 that the network does not sort correctly. Label the output of each compare-
and-swap with its value for this input, and label the outputs of the sorting network with their
values.
You can use a screenshot of the figure in your solution and annotate it with your counter-example.
I have also provided the original .pdf at

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/4/src/sort6.pdf.

(f) (5 points) Identify one of the networks that does sort correctly. Explain why if at least one of
x[0, . . . , (N − 1)] is a 1, then y[5] is a 1.

(g) (10 points) For the same network that you chose for the previous question, use the 0-1 principle
to prove that it sorts correctly. Of course, you may use your answers to the previous parts of this
question and the results from question 1 in your proof.

(h) (5 points): State whether or not the remaining two networks sort correctly – that means the
networks that you didn’t choose for Questions 2e or 2g.

3. GPU GFlops (35 points)
Let

f(x) = 5
2 (x3 − x)

Given x0, we’ll define a sequence x1, x2, . . . where

xi+1 = f(xi), i ≥ 0

If |x0| >
√

7/5 ≈ 1.1832, then the sequence of xi diverges as i→∞; so, we’ll restrict our attention to
the case where |x0| ≤ 1. That’s because 1 is a nice number, and it gives us a little “safety margin”.
Let’s say that we start with a vector of n values for x0 and want to compute xm for each of these
values. In other words we compute m steps of the recurrence for each initial value of x.

(a) (20 points): Write a CUDA implementation of this recurrence Your code should provide a function,

void f(float *x, float *xm, uint n, uint m);

where x is an array of n initial values; xm is an array of n floats into which to write the final result;
and m is the number of iterations to compute. When f(x, xm, n, m) returns,

xm[i] = fm(x[i])

should hold for 0 ≤ i < n.
Define the throughput of your implementation as n∗m/t where t is the time to execute f(x, xm, n, m).
Your goal is to make a fast implementation on one of the linXX machines – i.e. lin01.ugrad.cs.ubc.ca,
lin02.ugrad.cs.ubc.ca, . . . , lin01.ugrad.cs.ubc.ca. You can pick the values of n and m that
maximize the throughput for an execution that takes at most 0.1 seconds to execute. In your
solution, specify the values of n and m that you used and which machine you ran your code on for
timing measurements.

(b) (5 points): How many Gflops (billions of floating point operations per second) does your kernel
achieve? Provide data from executing your program that shows how the number of blocks, number
of threads per block, and any other critical design decisions affect the performance of your kernel.

(c) (5 points): I’ve provided a C implementation of f called f_cpu in hw4.cu. Measure the run-time
for f_cpu using the same parameters as you used for Question 3b. What speed-up do you get by
using the GPU and CUDA?
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(d) (5 points): Given the observations from Question 3b, describe how you took these performance
trade-offs into account when writing your implementation of the function f. What observations
can you make about writing efficient CUDA programs?
Your answer doesn’t need to be long. Anywhere from five to twenty sentences should be fine.
Grading will be based on how your explanations make the design of your code clear, not on
length.

4. saxpy (20 points)
This is similar to Question 3, but we’ll use saxpy instead of the recurrence described in the previous
problem.

(a) (5 points): Compile and run the saxpy(uint n, float a, float *x, float *y) example from
hw4.cu where x and y are arrays of n initial values; and a is a floating point number. When
saxpy(x_in, x_out, n, a, y) returns,

y’[i] = a*x[i] + y[i]

where y’[i] is the value of from the array y after the call to saxpy, and y[i] is the value before
the call.
Define the throughput of your implementation as n/t where t is the time to execute saxpy(x_in, x_out, n, a, y).
Your goal is to make a fast implementation. You can pick a value for n that maximizes the through-
put for an execution that takes at most 0.1 seconds to execute. As in Question 3, run your code
on one of the linXX machines, state what machine you ran your code on, and state the value for
n that you used to maximize throughput.

(b) (10 points): write a C implementation of saxpy called saxpy_cpu. Measure the run-time for
saxpy_cpu using the same parameters as you used for Question 4a. What speed-up do you get
by using the GPU and CUDA?

(c) (5 points): What are the limiting factors for the performance of your CUDA implementation
of saxpy. Provide timing measurements to support your conclusion. You might try making
modifications to saxpy (including changing what it computes) to test your ideas for what the
performance bottlenecks are.

Why?
Question 1: The concept of creating “clean” sequences occurs frequently in sorting networks, including at

least one sorting network from Question 2. This question is to introduce you to the concept and make
it easier to recognize the pattern.
I’ll add that Questions 1 and 2 were motivated in part by questions from piazza and office hours. In
the process of writing these questions, I found some great slides on sorting networks – see

https://hoytech.github.io/sorting-networks/

Question 2: This explores sorting networks with some specific examples. The goal is to help you recognize
common structures in sorting networks and how these structures are connected with the counting
arguments used to show that a sorting network sorts correctly.
Typically, I would ask a more concrete question like this one before the more general question like
Question 1. In this case, the properties of combining sorted sequences as described in Question 1 are
helpful in Question 2; so, I asked Question 1 first. Of course, you can solve the questions in either
order. Please submit your final solution in the same order as the questions were asked to make grading
simpler. Furthermore, you can use the properties that you are supposed to prove in Question 1 in this
question whether or not you complete Question 1.
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Question 3: This question lets you write a fairly simple CUDA kernel and see the performance trade-offs.
The problem is deliberately open-ended. You should be able to get pretty good performance with a
moderate amount of effort. You can also use this as a way to explore the trade-offs and quirks of GPU
programming and find ways to squeeze more performance out of the GPU.
I will post a throughput that is acceptable to get 100%. I will note what my solution gets. Solutions
that are faster than mine will receive extra credit.

Question 4: This is an even simpler GPU programming problem than Question 3 – you can get all or
most of the code from the assigned reading. That’s valuable as it makes sure that everyone gets across
the “hello world” threshold of getting something to work in CUDA. Once your first program works,
the others can be easier. The “interesting” part about the problem is comparing it with the results
you got in Question 3. That’s why I asked the other question first and asked for a comparison here.

Unless otherwise noted or cited, the questions and other material in this homework problem set is
copyright 2017 by Mark Greenstreet and are made available under the terms of the Creative Commons
Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/
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