
CPSC 418: Parallel Computation Feb 12, 2017

Homework 3

Name: Chenxi Liu

CWL: chenxil

1. Twin Primes

4 8 16 32 64 128 256 512 1024

3.543 5.593 8.990 14.141 16.025 15.575 22.720 27.598 25.980

Table 1: Speedups of primes with respect to different numbers of workers

10 100 1000 10000 100000 1000000

0.005 0.023 0.407 2.273 14.819 18.224

Table 2: Speedups of primes with respect to different inputs. Number of workers is 256.

4 8 16 32 64 128 256

0.615 0.563 0.919 1.812 1.726 2.751 2.376

Table 3: Speedups of sum inv twin primes with respect to different numbers of workers

The trend in 1b, 1c is that:

1. The speedup increases as the number of workers increases (though not linearly);

2. The speed up increases as the input increases.

The problem itself is embarrassingly parallel since there is no communication/synchronization between
workers during the computation. However, the measured speed-up is not linear. One possible factor
is that though each worker receives a range of equal length, workers with higher ranges are required
to do more work (computing more SmallPrimes) to determine primes. This causes inbalanced work
distribution which makes the speedup not linear.

The machine has 64 cores and hyperthreading which makes it capable to handle at least 128 threads
without many scheduling conflicts. The real data shows that as the number of workers increases to
1024, the speedup vs the number of workers curve starts to drop.

When the input is small, the scheduling (communications between the scheduler and workers) overhead
and idle workers dominate, which makes the speedup even < 1 for inputs, 10-1000. To make the speedup
at least 90% of the peak, the input needs to be roughly above 100000.

For 1e, the problem is solved with a parallel reduce. Since there are now collaborations, communication
and synchronization overheads make the speedup drop significantly compared to the primes. Further-
more, each worker makes a single pass of its list of primes to find the twin primes; which is much
less work than the original sieve. Thus, there is less sequential work to do and more communication
overhead. Both reduce the speed-up. Notice that the speedup of 128 workers is even slightly higher
than that of 256.

1



2. Architecture

1. Array results: 2.04081633x speedup

random array n=1000000 n trial=10 t avg=1.600e-01

ascending array n=1000000 n trial=10 t avg=7.840e-02

2. List results: 6.00500x speedup

random list n=1000000 n trial=10 t avg=4.804e-01

ascending list n=1000000 n trial=10 t avg=8.000e-02

In the array case, the two arrays to be merged are accessed sequentially, regardless of the original order
of the data – the cache behaviour should be roughly the same for the random and ascending cases.
However, the branch in the merge to determine which array has the smaller element is random for
random data and should be mis-predicted roughly half of the time. For the ascending data, all of the
data will be taken from the first array and then the remaining data will be taken from the second array.
There will be a few branch mis-predicts at the beginning of each segment, but the remaining branches
should be predicted correctly. For large arrays, this means that most of the branches are predicted
correctly. It appears that the difference in the execution time for the random and ascending data is due
to branch mis-predictions.

For the list case, the timing measurements show that with ascending data, the time for the list version is
about 2% slower than for the array version – this is probably smaller than the measurement randomness.
List splitting and merging takes more machine instructions than the corresponding operations for arrays.
I’m not sure if the near-match on speed is because of instruction-parallelism in the list version, or if the
extra work for lists is balanced by the time to malloc() and free() the temporary array.

With random data, the slow-down for lists is much more dramatic than that for arrays. For lists, the
memory-ordering of the list-cells becomes random as their data values become sorted. Thus, the list
version will end up with lots of cache misses once the list is large enough that it doesn’t fit in the L1
cache.

3. Message Passing Networks

Let p(0) = 1.

(a) For level k (with k ≥ 1), each of the 10-node clusters in the previous level has p(k−1) communication
ports. Each new 16-port crossbar switch uses 10 ports to connect one port of all 10 clusters and has
6 ports remaining for next level. Thus, p(k) = 6p(k− 1). Telescoping this formula yields p(k) = 6k.

(b) For level k (with k ≥ 1), to cut the network into two, for each top-level crossbar switch, we cut 5
out of 10 ports connecting to the next lower level. There are p(k − 1) crossbar switches in the top
level. Thus, we cut overall 5p(k − 1) = 5 · 6k−1 ports to bisect the network.

(c) The amount of data crossing the bisection is 5 · 10k−1 KBytes. According to (b), the bisection
bandwidth is 5 · 6k−1 GBytes/second. Assuming 1 GBytes is 106 KBytes, the time is (5/3)k − 1
microseconds. When k = 4, the time is (125/27) ≈ 4.63 microseconds.

(d) Cutting a torus vertically and horizontally generate the same bisection width. Consider cut a torus

into two tubes (each contains 10
k
2

2 × 10
k
2 nodes). The bisection width is 2 · 10

k
2 .

(e) The amount of data crossing the bisection is 5 · 10k−1 KBytes. According to (d), the bisection

bandwidth is 2·10
k
2 GBytes/second. Assuming 1 GBytes is 106 KBytes, the time is about 2.5×10

k
2
−1

microseconds. When k = 4, the time is 25 microseconds.

2


