
CpSc 418 Homework 3 Due: Feb. 17, 2017, 11:59pm
Early Bird: Feb. 15, 2017, 11:59pm

140 points.

Please submit your solution using the handin program. Submit your solution as
cs418 hw3

Your submission should consist of three files:

• hw3.c: C source code for the coding parts your solution.

• hw3.erl: Erlang source code for the coding parts your solution.

• hw3.pdf or hw3.txt: PDF or plain-text for the written response parts of your solution

Templates for hw3.c, hw3.erl, and hw3_test.erl will be available soon at:
http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/3/code.html.

Please submit code that compiles without errors or warnings. If your code does not compile, we might give
you zero points for the problem. Points will be deducted for compiler warnings.

1. Twin Primes (65 points)
Integers p1 and p2 are called twin primes if both p1 and p2 are prime, and p2 = p1 + 2. The twin prime
conjecture is that there are an infinite number of twin primes – as of writing this problem statement,
this conjecture remains open. However, the sum of the reciprocals of all of the twin primes is bounded
(the bound is known as “Brun’s constant”). The function sum_inv_twin_primes(N) in the template
file hw3.erl is a sequential computation of the sum of reciprocals of the twin primes for which p2 ≤ N .
In this problem, you will implement a parallel version of sum_inv_twin_primes(N).

(a) (20 points) Computing the primes that are =< N accounts for most of the time when comput-
ing sum_inv_twin_primes(N) for large N. Implement primes(W, N, DstKey) that computes the
primes that are less than or equal to N. The computation should be performed in parallel using
the workers of worker tree W. The result is a list of primes that is distributed across the workers
of W and associated with DstKey. As an example,

W = wtree:create(N_workers). % e.g. N_workers=16
hw3:primes(W, N, primes). % e.g. N=1000
lists:append(workers:retrieve(W, primes)) == hw3:primes(N). % should be true

Hints: You need a way to compute the list of primes in each worker. You could do this with
wtree:scan where Leaf1 and Combine are trivial, for example and the real work is done in Leaf2

wtree:scan(W,
fun(_) -> ok end, % Leaf1
fun(ProcState) -> % Leaf2

wtree:put(ProcState, DstKey, MyPrimes) % Your job: figure out how to compute MyPrimes
end,
fun(_,_) -> ok end, % Combine
ok % Acc0

).

This seems like a rather twisted use of wtree:scan. A more direct approach is to use
workers:update(W, Key, Fun, Args)

where Fun(ProcState, Arg) is called in each process and returns the value to be associated with
Key. Args must be a list with one element for each worker process. The Nth worker of W is called
with Arg = lists:nth(N, Args). For example:

1

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/3/src/hw3.c
http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/3/src/hw3.erl
http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/3/src/hw3_test.erl
http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/3/code.html
http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/2/src/hw3.erl
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#create-1
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/workers.html#retrieve-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#scan-5
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#scan-5
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#put-3
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#scan-5
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/workers.html#update-4
http://erlang.org/doc/man/lists.html#nth-2


workers:update(W, DstKey,
fun(ProcState, Arg) ->

workers:put(ProcState, DstKey, MyPrimes) % Your job: figure out how to compute MyPrimes
end,
Args

).

You may find the function misc:intervals(Lo, Hi, List) to be handy:
W = wtree:create(6).
Args = misc:intervals(0, 99, W). % Args = [{0,16},{16,32},{32,48},{48,65},{65,82},{82,99}]

(b) (10 points) Measure the speed up of your parallel implementation of primes with N=1000000
for N_workers <- [4,8,16,32,64,128,256]. Please use the time_it:t function for your tim-
ing measurements and run your code on thetis.cs.ubc.ca. What is the best speed-up your
implementation achieves?
Note: by default, time_it:t(Fun) executes Fun() enough times to take a total of about one
second of elapsed time. For the sequential version, this may be just one trial. If the reported
average run-time is greater than 0.1 seconds, you can use

time_it:t(fun() -> hw3:primes(W, N, DstKey) end, 10).

to ensure that the mean and standard deviation are calculated based on 10 runs. If the average
run time for either the sequential or parallel versions is more than two seconds (with N=1000000),
fix the efficiency problem in your code.

(c) (5 points) Choose the N_workers according to the value that got the highest speed-up with
N=1000000, and measure the speed up of your implementation of primes for

N <- [10,100,1000,10000,100000,1000000].
Please use the time_it:t functions as described above. How big does N need to be to get at least
90% of the peak speed-up?

(d) (15 points) Now, implement a parallel version of sum_inv_twin_primes. The function should be
sum_inv_twin_primes(W, SrcKey) where W is a worker tree, and SrcKey is the key for a list of
primes that is distributed over the workers. For example,

W = wtree:create(16).
hw3:primes(W, 10000, primes).
BrunGuess = hw3:sum_inv_twin_primes(W, primes).

should set BrunGuess to 1.41689. . .
(e) (5 points) Measure the speed up of your implementation of sum_int_twin_primes with N=1000000

for N_workers <- [4,8,16,32,64,128,256]. Please use the time_it:t functions as described
above.

(f) (10 points) Briefly explain the trends you observed in questions 1b, 1c, and 1e. Connect your
observations with what we have covered about parallel program performance and performance
loss in class and in the readings. If you want to devise a few experiments to test your hypotheses
– that’s great. Please do, and report what you did and what you found. However, running more
experiments than those requested above is not required for this problem.

2

http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/workers.html#update-4
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#intervals-3
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/wtree.html#create-1
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#intervals-3
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/time_it.html#t-1
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/time_it.html#t-1
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/time_it.html#t-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/time_it.html#t-1
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/time_it.html#t-1


2. Architecture (40 points)
The file http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/2/src/hw3.c provides two implementa-
tions of merge sort, one using lists and the other using arrays.

(a) (20 points) Complete the function main so that the program hw3 can be run as
hw3 init_data data_struct n n_trial

where
init_data is either random or ascending – it specifies whether the data to be sorted is random

or an ascending sequence.
data_struct is either list or array – it specifies whether to run the list or array version of

merge-sort.
n is optional. If given, it must be a positive integer – it specifies the number of elements to sort.

The default is 1,000,000.
n_trial is optional. If given, it must be a positive integer – it specifies how many times to execute

the specified sorting problem to accumulate enough time to make a meaningful measurement.
The default is 1.

Your completion of main should print the time that elapses to perform the requested sort. In
particular it should print a line of the form:

random list n=1000000 n_trial=10 t_avg=2.230e-01
where random indicates that the initial data was “random”; where list indicates that the data
structure was a list; and t_avg=2.230e-01 indicates that the average time for sorting the data
took 0.223 seconds. Please use getrusage to measure the time before and after running the sort(s)
and thereby determine the execution time of the sorting function.
Warning: This is C, not Erlang. The sort functions are destructive in the sense that the original
array or list is modified by sorting. Make sure that when you run multiple trials of random data
that all of them start with random data, not just the first. Likewise for multiple trials with
ascending data.

(b) (4 points) Report the elapsed time for
i. Sorting an array of 1,000,000 random elements.
ii. Sorting an array of 1,000,000 ascending elements.
iii. Sorting a list of 1,000,000 random elements.
iv. Sorting a list of 1,000,000 ascending elements.
Please run your trials on thetis.ugrad.cs.ubc.ca.

(c) (8 points) Which takes longer: sorting an array of ascending elements or sorting an array of
random elements? By what factor? Explain why one is faster than the other; you don’t need to
explain the specific ratio of run times that you observed.
Hints: think about branch prediction, cache misses, instruction level parallelism, pipelining, any
other good stuff we covered in our architecture review. When in doubt, try modifying the code to
test your conjecture(s) and seeing how it impacts the run time. If you do that, summarize your
experiments in your explanation.

(d) (8 points) Which takes longer: sorting a list of ascending elements or sorting a list of random
elements? By what factor? Is the ratio bigger or smaller than for arrays? Explain your observa-
tions.
Hints: same as the ones for arrays.

3

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/2/src/hw3.c
https://docs.oracle.com/cd/E19455-01/806-0627/6j9vhfmtq/index.html


3. Message Passing Networks (35 points)
Let’s say that I want to build a machine with 10k processing nodes; for example, a “node” might be
a multi-core CPU, but we’ll just consider “nodes” in this problem. Each node has a 1GByte/second
network port, and the routing is done with 16-port crossbar switches. We implement a form of “fat-
tree” (if you want to go beyond this homework problem, you can see [Lei85], but this problem statement
should be self-contained). Here’s how the connections work:

• We start with 10 nodes and one 16-port crossbar switch. Each node is connected to one port of
the crossbar. This leaves 6 crossbar ports for communication to the next level of the tree. We’ll
call this a 10-node cluster.

• We then build a 100-node cluster from ten 10-node clusters. We use six 16-port crossbar switches.
Each of these crossbar switches has a port for each of the 10-node clusters. This leaves six ports
per crossbar switch, a total of 36 ports, for communication to the next level of the tree.

• We continue in this fashion. Let’s say that a 10k-node cluster has p(k) ports for communication
with the next level. From the previous two cases, we know that p(1) = 6 and p(2) = 36. To
construct a 10k+1-node cluster, we use ten 10k-node clusters, and p(k) 16-port crossbar switches.
Each of these crossbar switches has a port for each of the 10k-node clusters. This leaves six ports
per crossbar switch, a total of 6p(k) ports, for communication to the next level of the tree.

(a) (5 points) Derive a formula for p(k).
Hints: it’s simple. The description in the bullet-points pretty much gives it away.

(b) (5 points) What is the bisection width of a machine with 10k nodes?
(c) (10 points) Let the nodes on the “left” side of a bisection have indices 0 . . . 5 ∗ 10k−1 − 1. Let the

nodes on the “right” side have indices 5∗10k−1 . . . 10k −1. Consider a case where each node, i, on
the left sends a 1Kbyte message to node i + 5 ∗ 10k−1. If we only consider the time to transfer the
data across the network bisection, how long does it take to send these messages? Give a formula
with k, and a specific value for the case that k = 4.
For example, if k = 4, then there are 10,000 nodes. The left nodes have indices 0, 1, 2, . . . , 4999,
and the right nodes have indices 5000, 5001, . . . , 9999. The scenario above has node 0 send a
1Kbyte message to node 5000; node 1 sends a 1Kbyte message to node 5001; . . . ; and node 4999
sends a 1Kbyte message to node 9999.

(d) (10 points) If k is even, we can arrange the 10k nodes as a 10k/2 ×10k/2 toroidal mesh, where each
node has four 1Gbyte/sec links: one to its north neighbour, one to its south neighbour, one to
the east, and one to the west. What is the bisection width of a toroidal machine with 10k nodes?

(e) (5 points) Again, we can assign indices to the nodes of the toroidal machine as described above
for the fat-tree. Consider a case where each node, i, on the left sends a 1Kbyte message to node
i + 5 ∗ 10k−1. If we only consider the time to transfer the data across the network bisection, how
long does it take to send these messages? Give a formula with k, and a specific value for the case
that k = 4.

4



Why?
Question 1: The parallel implementation of the prime sieve is an embarrassingly parallel problem. I

want you to get experience with “easy” parallelism. It also provides a nice example for many of the
performance issues that we’ve been covering in class.

Question 2: The obvious reason for this problem is to give you some hands-on experience with the
architecture issues covered in lecture and readings. It also lets you see how we can connect analytical
results with actual performance – where practice matches theory, and where it doesn’t.
A second motivation is that we will be programming in C with CUDA in the second half of the term.
This problem gets you measuring timings in C. It is a chance for the instructors and TAs to make sure
we’ve got the right set-up for office hours, tutorials, and grading as we make this transition.

Question 3: The book didn’t cover fat-trees, but you should see them at least once before the term is over.
This gives you a chance to see some of the trade-offs when designing a network topology for parallel
computing.
This problem also has a second motivation. We’ve got a midterm coming up. I haven’t figured out a
way for you to write real code on real computers using real development environments during an exam.
frownie. Accordingly, I figured I should start giving some problems that can be solved without using
a computer.

References
[Lei85] C. E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE Trans-

actions on Computers, 34(10):892–901, October 1985.

Unless otherwise noted or cited, the questions and other material in this homework problem set is
copyright 2017 by Mark Greenstreet and are made available under the terms of the Creative Commons
Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

5

http://creativecommons.org/licenses/by/4.0/

