
CPSC 418: Parallel Computing Winter 2016–2017 Term 2
Homework #2 c© 2017 by Mark Greenstreet and Devon Graham

Homework #2 Solution Set

All problems for this homework were programming problems. The source code for the solution is available
at

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/2/sol/hw2.erl Here are some explanatory remarks
about the solution for each question.

1. mean(WTree, DataKey) (20 points)

Solution: Since this function is just returning a single value, it can easily be implemented with a
reduce. All the mean function needs to do is call wtree:reduce, passing in the worker tree, WTree,
and the appropriately defined functions Leaf, Combine, and Root. It basically works just like a function
for sum, except we also need to know the length of the list. So the Leaf function gets its data from
the ProcState variable (in the form of a list of numbers), and puts it into a tuple of the form {Sum,
Length}. The Combine function then just needs to add the corresponding values in the two tuples it
gets, and Root returns the average by dividing Sum by Length for the tuple it gets.

2. vec mean(WTree, DataKey) (20 points)

Solution: This is almost identical to question 1 if you use the vec sum function that is given, so
again, it can easily be implemented with a reduce. The Leaf function puts the (vector) sum of its
data into a tuple, along with the number of vectors it received. The Combine function adds the vectors
and lengths that it receives and returns them in a new tuple. And Root just needs to divide each
element in the vector it receives by the total number of vectors. Note that, given Sum (the sum of
all vectors) and N (the number of vectors), the expression [X / N || X <- Sum] returns a list of
elements X / N for all X in the list Sum.

3. set nth(N, Fun, List) (10 points)

Solution: There are many ways to solve this problem, but it can be done simply and concisely us-
ing pattern matching and recursion. The solution provided simply applies Fun to the head of List if
N is 1. Otherwise it appends the head element to the result of the recursive call.

One question that came up in discussing this problem is “Do we need to use tail-recursion?”. The
problem did not specify tail-recursion; so we won’t punish head-recursive solutions. In particular, the
provided solution is head-recursive. There is a design trade-off. The head-recursive implementation is
simpler, and “obviously” correct. The tail recursive version is needed if we are worried about the case
where N is huge (i.e. greater than one million). In this case, the solution set chose: “Do the simple way
first.”, or, as Don Knuth noted “The road to hell is paved with premature optimization.”.

There are some cases where tail-recursion is a must. In Erlang, server processes are implemented with
recursive functions. Unless these functions are tail recursive, the server will gradually use more memory
until it crashes. Tail-recursion is a must for cases like this. There are other cases where head-recursion
is clearly harmless, for example, traversing a balanced binary tree. The height of the tree, and thus
the depth of the recursive calls, is bounded by the log of the number of leaves of the tree. There will
never be a tree so large that we can’t afford the stack frames for a traversal.

4. bank statement(WTree, SrcKey, DstKey, InitialBalance) (20 points)

Solution: Unlike in questions 1 and 2, here we want to return a list of values (i.e., the balance at

1

http://www.ugrad.cs.ubc.ca/~cs418/2016-2/hw/2/sol/hw2.erl

each point in time), and processes need information about values to their left in order to calculate
their own final values. So we should use a scan. We need to choose the functions Leaf1, and Leaf2,
Combine, and the initial value Acc0. The hardest part of this question is probably figuring out how to
deal with interest transactions. The idea is for each node to calculate a balance along with a tally
of accumulated compound interest. The key observation is that any sequence of transactions can be
summarized as a linear function:

FinalBalance = A ∗ InitialBalance + B

where A and B depend on the particular sequence of transactions.

Leaf1 uses the lists:foldl function, calling the helper bs leaf1 on each element of Source, its
data. This returns a tuple of the form {Balance, CompoundInterest}, where Balance is the result of
applying all the transactions in the node’s data, and CompoundInterest is the (multiplicative) total
of any interest transactions. The helper bs leaf1 applies a single transaction to the running total,
returning a tuple of the form {Balance, CompoundInterest}.
Leaf2 gets a list of transactions (from ProcState) and the result (i.e., balance and accumulated
interest) of all transactions to its left. It then needs to update the DstList in ProcState with the
appropriate values. We want to return a list of balances, given a list of transactions and an initial
balance. This is a good place to use a map (actually, a mapfoldl since we are accumulating the values).
The function we are passing to mapfoldl is essentially the same as bs leaf1, but the return value needs
to be of the form {Balance, {Balance, CompoundInterest}} to fit what mapfoldl is expecting. The
wrapper function bs leaf2 is just converting the result of bs leaf1 to this form. Leaf2 then stores
this result in the ProcState so we can access it after computation finishes.

Combine gets two tuples of the form {Balance, CompoundInterest}. Since the transactions of the left
tuple occurred before those of the right tuple, the interest of the right tuple needs to be applied to the
balance of the left tuple. The value of Balance returned is the sum of this and the right balance. The
new value of CompoundInterest is just the product of the interest from the two input tuples.

Acc0 needs to be a tuple of the form {Balance, CompoundInterest}, so we provide {InitialBalance,
1.0}. We chose 1.0 for the initial value for CompoundInterest because 1.0 has the effect of applying no
interest. However, if you check the calculations, you’ll note that the initial value of CompboundInterest
only affects the final compound interest and has no impact on the per-transaction balances. So, we
could put any (numeric) value we want for the CompoundInterest field.

5. sliding average(WTree, SrcKey, DstKey, Kernel, InitialPrefix) (25 points)

Solution: Again, a scan is appropriate for this question because processes need information about
values to their left in order to calculate their own final values. In this case they will need the
length(Kernel)-1 values that come immediately before their own data. This way they can calculate
the sliding average of their first length(Kernel)-1 values.

Leaf1 just needs to pass up its rightmost length(Kernel)-1 values. These values will be used in the
Leaf2 function to calculate the sliding average for the leftmost values coming from nodes to the right.

Combine also just needs to return the rightmost length(Kernel)-1 values from the two sublists it gets
so that nodes to the right can calculate the sliding average of their leftmost values. It is possible that
length(Right) < length(Kernel)-1, in which case we also need to pass up some of the values from
Left.

Leaf2 gets the length(Kernel)-1 values that come immediately before its own data in AccIn. So it
can just calculate the sliding average of this using the helper for the sequential algorithm.

6. Test cases (5 points)

Solution: Make sure to test edge cases such as empty lists and badly formed inputs. In some cases your
code can just error out on these inputs, but others it should handle properly. You can use assertError
and assertException to make sure you are handling error scenarios properly.

2

