Midterm

Graded out of 86 points

This exam has 10 pages (plus the cover sheet). Please check that you have a complete exam.
Answer question 0 , and any four out of questions $1-5$. If you write solutions for all questions, please indicate which you want to have graded; otherwise the graders will select which one to discard. Note that questions $1-3$ are worth 20 points each and questions $4-5$ are worth 24 points each. Depending on which questions you choose to answer, your maximum score will be either 86 or 90 ; however, no matter which questions you choose to answer the exam will be graded on a scale of 86 points.
0. (2 points)

Sign below to confirm that you have read and understood the exam instructions.

I, \qquad confirm that I have read and understood the exam instructions and that I only need to attempt four questions out of questions $1-5$ below. If I attempt all questions, I understand that I should clearly indicate which ones to grade. If I attempt all questions and do not indicate which ones to grade, then I accept that the graders will choose at their own convenience which to grade.

1. Erlang (20 points)

The final two pages of the exam contain Erlang definitions of the functions last, lastv2 and biggest_product, along with associated functions that are used to define these functions. You may find it convenient to tear off the last sheet of the exam so you can refer to these functions while answering this question.
For each of these functions, state its asymptotic worst-case run time (using big-O notation) and briefly justify your claim (you do not need to provide a formal proof or recurrence).

For your run time analysis you may use the variable N to refer to the length of the list, the variable P to refer to the size of the worker pool W, and variable λ to refer to the ratio between the time taken to complete a global action (such as communicating a message between workers) and the time taken to complete a local action (such as a basic arithmetic operation). You may assume that the following operations are all unit time local actions:

- hd, tl, pattern matching
- +, -, *, /, abs, div, max, rem
- <, =<, = : =, ==, / =, =/=, >=, >
- and, andalso, or, orelse, not.

You may also assume that lists: foldl (Fun, Acc0, List) takes time linear in the length of List plus the time for the (linear number of) calls to Fun.

The possible run-time complexities are: $O(\log N), O(N), O(N \log N), O\left(N^{2}\right), O(N+P), O(N+\lambda), O(N P)$, $O(\lambda N), O((N / P)+\log P), O((N / P)+\lambda \log P), O((N / P)+\lambda)$, or $O((N / P)+\lambda P)$. Not all of these complexities occur in this question.
(a) (5 points) last: return the last element of a list. Asymptotic complexity and brief justification:
(b) (5 points) lastv2: another implementation of last. Asymptotic complexity and brief justification:
(c) (10 points) greatest_product: return the greatest product of pairs of adjacent elements in a list (parallel implementation). Asymptotic complexity and brief justification:
2. largest_gap (W, Key) (20 points)
largest_gap should return the largest gap between adjacent numbers of the list of numbers stored on the worker processes of W and associated with Key. Here is the sequential version:

```
largest_gap([]) -> undef;
largest_gap([H | Tail]) ->
    {gap, -} = lists:foldl(fun(X, {G, PrevX}) -> {my_max(abs(X-PrevX), G), X} end,
                                    {undef, H}, Tail),
    gap.
```

where my_max is the function defined in question 1. For example,

```
largest_gap([]) -> undef.
largest_gap([1,4,9,16,20]) -> 7. % |16-9| = 7
largest_gap([1,4,9,16,2]) -> 14. % |2-16| = 14
```

The parallel version of largest_gap is a typical reduce pattern, and you will write the functions lg_leaf, lg_combine and lg_root in the following implementation:

```
largest_gap(W, Key) ->
    wtree:reduce (W,
        fun(ProcState) -> lg_leaf(wtree:get(ProcState, Key)) end,
        fun(Left, Right) -> lg_combine(Left, Right) end,
        fun(Top) -> lg_root(Top) end
    ).
```

Assuming that there are N elements in the list spread evenly across P workers in the worker pool W (where $P \ll N$), your implementation should achieve a speedup close to P. Your implementation should fail if there is no value associated with Key or if the value associated with Key is not a list of numbers.
You may call any of the functions defined in question 1, the sequential largest_gap (List) function defined above, any Erlang built-in functions, and any functions from the lists, misc, workers, or wt ree modules. Hint: Some functions from question 1 may prove inspirational even if they cannot be called directly.
(a) (8 points) Your code for lg_combine(Left, Right):
(b) (8 points) Your code for lg_leaf (Data):
(c) (4 points) Your code for lg_root (Top):
3. Message Passing Network Topologies (20 points)

We are building a message passing machine with 64 nodes, and we need to decide how to connect its network. For each of the following topologies, specify the bisection bandwidth, diameter and maximum number of network ports needed by a node.
(a) (3 points) Ring.
bisection bandwidth: diameter: network ports:
(b) (3 points) 2D mesh.
bisection bandwidth: diameter: network ports:
(c) (3 points) 3D mesh.
bisection bandwidth: diameter: network ports:
(d) (3 points) 6D hypercube.
bisection bandwidth: diameter: network ports:
(e) (4 points) State two advantages of the 6D hypercube over the 2 D mesh? Answers which give more than two will receive zero.
(f) (4 points) State two advantages of the 2D mesh over the 6D hypercube? Answers which give more than two will receive zero.

Figure 1: Sorting Networks

4. Sorting Networks (24 points)

Figure 1 shows two sorting networks with five inputs: sort5.a, and sort5.b. One of these networks sorts correctly and one does not.
(a) (10 points) Identify which of the networks does not sort correctly. Label the inputs with values of $\mathbf{0}$ or $\mathbf{1}$ that the network does not sort correctly. Label the output of each compare-and-swap with its value for this input, and label the outputs of the sorting network with their values. The "example" network provides an example of such a labeling (and also an incorrect attempt at sorting).

Which network do you claim is incorrect (circle one): sort5.a sort5.b
Remember to label that network with a counter-example in the figure above.
(b) (14 points) For the other network, explain specifically how it sorts any combination of three $\mathbf{0}$ s and two $\mathbf{1 s}$ correctly. Here is such an explanation for the "example" network (even though it does not sort all inputs correctly).

Consider any input X with two 1 s. The left ascending diagonal of compare-and-swap modules ensures that 1 with the greater index in the X array reaches the top row. The right ascending diagonal ensures that the 1 with the lower index in X reaches the second from the top row.

Figure 2: Speedup for some parallel algorithms.

5. Short Answer (24 points)

(a) (7 points) Figure 2 shows the speedup measured for four algorithms: alg 1, alg 2, alg 3 and alg 4. In the space to the right of the plot, label each curve as either sublinear, linear or superlinear speedup. Not all speedups may be present in the plot.
Give two general reasons why parallel programs sometimes display sublinear speedup other than computational or communication overhead. Answers which give more than two reasons will receive zero.

Give one general reason why parallel programs sometimes display superlinear speedup. Answers which give more than one reason will receive zero.
(b) (6 points) For sequential computing there is the successful and near ubiquitous Von Neumann architecture; in the early days of computing there were other sequential architectures, but they have essentially disappeared from use. In contrast, we have discussed three very different approaches to achieving parallel computation that are still widely used, often in combination with one another: superscalar, shared memory and message passing. For each of the three, give one reason why it has not become dominant over the others; in other words, one significant disadvantage. Note that your reasons need not be unique. Answers which give more than one reason for any approach will have marks deducted.
(c) (6 points) You should remember from your algorithms course that sequential merge sort requires $\mathcal{O}(N \log N)$ time and $\mathcal{O}(N \log N)$ comparisons for N elements. We saw that under reasonable assumptions a bitonic sorting network requires $\mathcal{O}\left(\left(\frac{N}{P}\right)\left(\log N+\log ^{2} P\right)\right)$ time and $\mathcal{O}\left(N \log N \log ^{2} P\right)$ comparisons for N elements with P processors. Assume now that we have M (where $M \gg P$) independent sorting problems each of size N. In this question we consider two methods of solving these M problems: either connecting the P processors together into a single bitonic sorting network and running the problems through the network one at a time, or running up to P independent sequential merge sorts at a time. We will assume in each case that the data is already distributed in a manner which is optimal for that case. Is the latency of a bitonic sorting network better, worse or about the same as independent sequential merge sorts? Is the throughput of a bitonic sorting network better, worse or about the same as independent sequential merge sorts? Briefly explain your answers.

Bitonic latency (circle one and briefly explain): BETTER WORSE SAME

Bitonic throughput (circle one and briefly explain):
BETTER WORSE
SAME
(d) (5 points) We developed a tree-based reduce operation in Erlang-a language which assumes a message passing architecture, although it can be run on either message passing or shared memory hardware-to speed up parallel computations that produce a small amount of summary information at a single process from a large amount of data spread across many processes. If we were to use a language and hardware which supported shared memory, is a tree-based reduce still useful to speed up parallel computation? Briefly explain your answer. (If it is relevant to your answer, you may assume an idealized memory where access to any item costs the same amount for any process.)

This page is an extra in case you run out of space when answering the questions above. If you use this page, make sure you specify which question(s) you are answering here.

Functions for Q1a and Q1b

Do not write your answer on this page-it will not be graded. You may find it convenient to tear this page off when answering questions 1 and 2 . If you tear it off, you need not submit it with the rest of your exam.

```
%%%%%%%%%%
% last(List) -> LastElement.
% Return the last element of List. If List is not
% a list or if List is empty, then an error will be thrown.
    Example:
                last([1, 4, 9, 16]) -> 16.
            For run-time analysis, N= length(List).
last([E]) -> E;
last([_ | T]) -> last(T).
```

```
%%%%%%%%%%%
% lastv2(List) -> LastElement.
% Another implementation of last(List).
% For run-time analysis, N= length (List).
lastv2(List) when length(List) > 1 -> lastv2(tl(List));
lastv2([X]) -> X.
```


Repeated from the question 1 problem statement for your convenience:

For your run time analysis you may use the variable N to refer to the length of the list, the variable P to refer to the size of the worker pool W, and variable λ to refer to the ratio between the time taken to complete a global action (such as communicating a message between workers) and the time taken to complete a local action (such as a basic arithmetic operation). You may assume that the following operations are all unit time local actions:

- hd, tl, pattern matching
- +, -, *, /, abs, div, max, rem
- $<,=<,=:=,==, /=,=/=,>=,>$
- and, andalso, or, orelse, not.

You may also assume that lists: foldl (Fun, Acc0, List) takes time linear in the length of List plus the time for the (linear number of) calls to Fun.
The possible run-time complexities are: $O(\log N), O(N), O(N \log N), O\left(N^{2}\right), O(N+P), O(N+\lambda), O(N P)$, $O(\lambda N), O((N / P)+\log P), O((N / P)+\lambda \log P), O((N / P)+\lambda)$, or $O((N / P)+\lambda P)$. Not all of these complexities occur in this question.

Function for Q1c

Do not write your answer on this page-it will not be graded. You may find it convenient to tear this page off when answering questions 1 and 2. If you tear it off, you need not submit it with the rest of your exam.

```
%%%%%%%%%% Q1.d
% greatest_product(W, Key) -> Number.
% W is a worker-tree. Key is the key for a list of numbers distributed
% across the workers We return the largest product of adjacent numbers.
% If the list is empty or a singleton, then greatest_product returns 'undef'.
        If there is no value associated with Key, or if the value associated with
        Key is not list of numbers, then greatest_product fails.
        Example:
            If Key corresponds to the list [1, 2, 7, 3, 5, 4, 2, -8, 6, 3],
            Then the products of adjacent numbers are
                    [2, 14, 21, 15, 20, 8, -16, -48, 18],
            and the largest product of adjacent numbers is 21.
        For run-time analysis: let }N\mathrm{ denote the total length of the list
        corresponding ot Key; let P denote the number of processes.
        Assume that the list is divided into equal sized segments.
        Assume that there are enough processors so that all processes
% can run at the same time.
greatest_product(W, Key) ->
    wtree:reduce(W,
            fun(ProcState) -> bp_leaf(wtree:get(ProcState, Key)) end,
            fun(Left, Right) -> bp_combine(Left, Right) end,
            fun(Top) -> bp_root(Top) end
    ).
bp_leaf([]) -> empty;
bp_leaf(List) -> {hd(List), gp(List), last(List)}.
bp_combine(empty, Right) -> Right;
bp_combine(Left, empty) -> Left;
bp_combine({LL, LBig, LR}, {RL, RBig, RR}) ->
    {LL, my_max([LBig, LR*RL, RBig]), RR}.
bp_root({_, Big, _}) when is_number(Big) -> Big;
bp_root(_) -> undef.
% gp(List) -> Number.
% a sequential version of greatest_product.
gp(List) -> gp(List, undef).
gp([], BigProd) -> BigProd;
gp([_], BigProd) -> BigProd;
gp([A | Tail = [B | _]], BigProd) ->
    gp(Tail, my_max(A*B, BigProd)).
% my_max: calculate max where 'undef' is less thn any number
my_max (undef, Y) -> Y;
my_max (X, undef) -> X;
my_max (X, Y) -> max(X, Y).
% my_max for lists.
my_max(List) -> lists:foldl(fun(X, Acc) -> mymmax(X, Acc) end, undef, List).
```

