
Name & Student Number:

This page is an extra in case you run out of space when answering the exam questions. If you use this page,
make sure you specify which question(s) you are answering here.

© 2017 by Mark Greenstreet & Ian M. Mitchell. 2



Name & Student Number:

CPSC 418: Parallel Computing Winter 2016–2017 Term 2

Final Exam

Do all of the questions below. You have 150 minutes (2.5 hours) to complete the exam and there are
120 points available, so use the point allocation for each question as a guide when managing your time.

Although questions 1–4 are all about CUDA, they are exploring independent aspects of this programming
paradigm. Even if you get stuck on one, you should be able to make progress on the others.

Where relevant in the CUDA questions, you may assume that kernels are launched with blockDim.x
= warp size and blockDim.y = warp size where warp size = 32. Except where otherwise
specified, you may also assume that kernels are executing on a GTX 550 Ti (the same as is available in the
linXX boxes in the lab). The specifications for this GPU are given in figure 1.

The figures are all on the final pages of the exam. You may remove these pages from the exam to make it
easier to refer to them while answering the questions.

1. CUDA and Global Memory (17 points)

Figure 2 shows a brute-force implementation of matrix multiplication (it is the same as the code from
the March 24 lecture).

(a) Coalesced global memory references, definition (3 points): What does it mean for memory
references to be coalesced?

(b) Coalesced global memory references, pro or con (4 points): In general, is it desirable to have
coalesced memory references? Briefly explain why or why not.

© 2017 by Mark Greenstreet & Ian M. Mitchell. 3



Name & Student Number:

(c) Coalesced global memory references, example (5 points): Give one example of a memory
reference in the code from Figure 2 which can be coalesced. Briefly explain why the reference
can be coalesced.

(d) Coalesced global memory references, non-example (5 points): Give one example of a mem-
ory reference in the code from Figure 2 which cannot be coalesced. Briefly explain why the
reference cannot be coalesced.

2. CUDA and Shared Memory (25 points)

Figure 3 shows an implementation of matrix multiplication using shared-memory and tiles (it is a
corrected version of the code from the March 24 lecture).

(a) Bank conflicts (7 points): What is a shared-memory bank conflict? In general, is it desirable to
have bank conflicts? Briefly explain why or why not.

© 2017 by Mark Greenstreet & Ian M. Mitchell. 4



Name & Student Number:

(b) References to a sh (5 points): Consider the references to a sh in the statement:
sum += a sh[i][k] * b sh[k][j];
Do these references incur bank conflict(s)? Why or why not?

(c) References to b sh (5 points): Consider the references to b sh in the statement:
sum += a sh[i][k] * b sh[k][j];
Do these references incur bank conflict(s)? Why or why not?

(d) Effect of syncthreads() (3 points): Briefly explain what a call to syncthreads()
does.

(e) Effect of not using syncthreads() (5 points): The code for the mmult2 kernel in-
cludes two calls to syncthreads(). What is a possible error scenario if the second call
to syncthreads() were deleted: How would the threads (mis)behave and what variables’
and/or arrays’ values might be affected?

© 2017 by Mark Greenstreet & Ian M. Mitchell. 5



Name & Student Number:

3. Memory Access vs Compute (25 points)

To simplify your formulas in the questions below, you may assume that the kernel is used to compute
the product of two N -by-N matrices where N is a multiple of 32 and N � 32. Count only floating-
point operations (ignore the cost of integer operations), and count each floating-point multiplication
and each floating-point addition as a separate operation even if they can be fused.

(a) Define CGMA (3 points): What is CGMA? Provide both the meaning of the acronym and a
mathematical formula for its value.

(b) CGMA on GPUs (4 points): Briefly explain why CGMA matters on a GPU. Do we want a low
value or a high value for the CGMA?

(c) CGMA for CPUs? (3 points): Is CGMA important when designing serial algorithms for tradi-
tional CPUs? Briefly explain your answer.

(d) Computing CGMA for brute force implementation (6 points): What is the CGMA for the
code from Figure 2?

© 2017 by Mark Greenstreet & Ian M. Mitchell. 6



Name & Student Number:

(e) Computing CGMA for tiled implementation (9 points): What is the CGMA for the code from
Figure 3?

4. CUDA and Performance (15 points)

(a) GFlops (5 points): The time to compute the product of two 1024-by-1024 matrices on lin19
using the mmult2 kernel from Figure 3 is 0.02 seconds (the average for 100 trials). How
many GFlops (giga-floating-point operations per second) does this kernel achieve? Count each
floating-point multiplication and each floating-point addition as a separate operation, even if
they can be fused, and ignore integer operations.

(b) Speed-up (5 points): As noted above, mmult2 takes 0.02 seconds to compute the product
of two 1024-by-1024 matrics on lin19. I wrote a reference implementation in C and it took
1.9 seconds running on the CPU. What is the speed-up for the CUDA version from Figure 3
relative to this CPU version of matrix multiplication?

© 2017 by Mark Greenstreet & Ian M. Mitchell. 7



Name & Student Number:

(c) Faster GPUs (5 points): The GTX 550 Ti GPUs in the linXX machines are fairly old. The
recently released GTX 1080 has 2560 CUDA cores (i.e. SPs), can perform 8,228 GFlops, and
has a global memory bandwidth of 320 GBytes/second. What is the minimum CGMA needed
for the GTX 1080 to achieve its maximum GFlops?

5. Short Answer (23 points)

(a) Map Reduce (6 points): How does the implementation of map-reduce described in MapReduce:
Simplified Data Processing on Large Clusters handle node failures (i.e. machine crashes)?

(b) Shared Memory (3 points): A vendor of shared memory multi-processors is trying to convince
you to buy one by arguing that all cores on a shared memory machine can access all memory
locations; consequently, parallel software implemented on these machines will not suffer from
communication overhead. Briefly explain why this argument is false on modern hardware.

© 2017 by Mark Greenstreet & Ian M. Mitchell. 8



Name & Student Number:

(c) PReach (6 points): What is load balancing?

How does PReach implement load balancing?

(d) The 0-1 Principle and Sorting Networks (8 points): Consider the following algorithm for
sorting 0-1 sequences: Count the number of zeros in the input sequence and then create an
output sequence of the same length as the input sequence with the appropriate number of zeros
at the front and the remaining entries set to one. This algorithm cannot sort sequences of arbitrary
numbers.
Can this algorithm be implemented by a sorting network? If so, sketch the sorting network for
sequences of size 4. If not, explain why not.

© 2017 by Mark Greenstreet & Ian M. Mitchell. 9



Name & Student Number:

6. Map, Reduce and Scan (15 points) A sequence of numbers {xi}Ni=1 of lengthN is already distributed
across P processors with each processor pi having Ki elements where N � K ≥ Ki ≥ K for some
maximum K and minimum K > 0 number of elements. When generating an output, it can be
distributed across the processors in any convenient manner (including not distributed in the case of
scalar outputs). In answering the questions below assume that local operations take 1 unit of time and
sending a message of any length between processors takes λ units of time for some λ > 1.

(a) Mean (2 points): We would like to compute the mean of all of the entries in the data sequence;
in other words, the mean of all entries {xi}Ni=1. Is this a map, reduce or scan operation (circle
one):

MAP REDUCE SCAN

(b) Complexity of Mean (5 points): What is the “big-O” complexity (in terms of problem param-
eters N , P , K, K and/or λ) of computing the mean of the entire sequence? Note that your
“big-O” analysis may have more than one “leading” term depending on how the problem pa-
rameters combine.

(c) Running Mean (2 points): We would like to generate a new sequence containing the running
mean of all of the entries in the data sequence; in other words, entry j of the output sequence
will contain the mean of all entries {xi}ji=1. Is this a map, reduce or scan operation (circle one):

MAP REDUCE SCAN

(d) Square (2 points): We would like to generate a new sequence containing the squares of all of
the entries in the data sequence; in other words, entry j of the output sequence will contain x2j .
Is this a map, reduce or scan operation (circle one):

MAP REDUCE SCAN

(e) Relative communication cost (4 points): Rank the three problems “mean”, “square” and “run-
ning mean” from least to most communication. Note that constant factors may determine the
ranking. Briefly justify your ranking.

© 2017 by Mark Greenstreet & Ian M. Mitchell. 10



Do not write your answers on this page—it will not be graded. You may find it convenient to tear this
page off when answering exam questions. If you tear it off, do not submit it with the rest of your exam.

• Number of SMs: 4
• Warp size: 32
• Maximum number of threads per block: 1024
• Maximum number of resident blocks per SM: 8
• Maximum number of resident warps per SM: 48
• Maximum number of resident threads per SM: 1536
• Register file capacity per SM: 128Kbytes
• Shared memory capacity per SM: 48Kbytes
• Number of banks of shared memory for each SM: 32
• Global memory capacity: 1 GByte

Figure 1: GTX 550 Ti specifications

global void mmult1(float *a, float *b, float *c, uint32 t n) {
uint32 t i = blockDim.y*blockIdx.y + threadIdx.y; // my row index
uint32 t j = blockDim.x*blockIdx.x + threadIdx.x; // my column index
if((i < n) && (j < n)) {

float *a row = a + n*i;
float *b col = b + j;
float sum = 0.0f;
for(uint32 t k = 0; k < n; k++)

sum += a row[k] * b col[n*k];
c[n*i + j] = sum;

}
}

Figure 2: Brute-force CUDA implementation of matrix multiplication. Arguments a and b are the input
matrices, c is the output matrix, and n is the problem size (all matrices are n × n).



Do not write your answers on this page—it will not be graded. You may find it convenient to tear this
page off when answering exam questions. If you tear it off, do not submit it with the rest of your exam.

#define TILE WIDTH 32

global void mmult2(float *a, float *b, float *c, uint32 t n) {
shared float a sh[TILE WIDTH][TILE WIDTH];
shared float b sh[TILE WIDTH][TILE WIDTH];

uint32 t i blk = blockIdx.y; // my block-row index
uint32 t j blk = blockIdx.x; // my block-column index
uint32 t i = threadIdx.y; // row-index within this block
uint32 t j = threadIdx.x; // column-index within this block
if((i blk*blockDim.y + i < n) && (j blk*blockDim.x + j) < n) {

float *a row blk = a + n*i blk*TILE WIDTH; // start of our row of blocks
float *b col blk = b + j blk*TILE WIDTH; // start of our column of blocks
float sum = 0.0f;

// outer iteration: over the blocks of a row blk and b col blk
for(uint32 t kk = 0; kk < n; kk += TILE WIDTH) {

// load blocks from a and b
a sh[i][j] = a row blk[n*i + kk + j];
b sh[i][j] = b col blk[n*(kk+i) + j];
syncthreads(); // first sync

// inner iteration: over the elements of a sh and b sh
uint32 t k top = min(TILE WIDTH, n-kk);
for(uint32 t k = 0; k < k top; k++)

sum += a sh[i][k] * b sh[k][j];
syncthreads(); // second sync

}
// copy our result to the c matrix in global memory
c[n * (i blk*TILE WIDTH + i) + (j blk*TILE WIDTH + j)] = sum;

}
}

Figure 3: Matrix multiplication using CUDA shared-memory. Arguments a and b are the input matrices, c
is the output matrix, and n is the problem size (all matrices are n × n).


