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CPSC 418: Parallel Computing Winter 2016–2017 Term 2

Final Exam Solution Set

Students had 150 minutes (2.5 hours) to complete the exam and there were 120 points available

Where relevant in the CUDA questions, you may assume that kernels are launched with blockDim.x = warp size
and blockDim.y = warp size where warp size = 32. Except where otherwise specified, you may also as-
sume that kernels are executing on a GTX 550 Ti (the same as is available in the linXX boxes in the lab). The
specifications for this GPU are given in figure 1.

1. CUDA and Global Memory (17 points)
Figure 2 shows a brute-force implementation of matrix multiplication (it is the same as the code from the
March 24 lecture).

(a) Coalesced global memory references, definition (3 points): What does it mean for memory references
to be coalesced?

If the threads of a warp access nearby locations of the global memory, the memory reference is
said to be coalesced. Coalesced memory references only make one global memory access.

(b) Coalesced global memory references, pro or con (4 points): In general, is it desirable to have coalesced
memory references? Briefly explain why or why not.

Generally, coalesced reference are prefered. The GPU can take advantage of accessing a large,
contigous block of memory and achieve high bandwidth with the data transfer. Conversely, if
locations are not coalesced, then several bank accesses may be needed, and several transfers
of data from the DRAM to the GPU. Thus, coalesced references are handled faster than non-
coalesced ones.

(c) Coalesced global memory references, example (5 points): Give one example of a memory reference in
the code from Figure 2 which can be coalesced. Briefly explain why the reference can be coalesced.

Reading from b col in b col[n*k] is coalesced. That is because all threads in the same warp
share the same values for n and k. The values for b col are consecutive for consecutive threads
in a warp because
b col = b + j;

where j = threadIdx.x, and threads are consecutively indexed first in the x dimension and
then in y and z.
Note (for grading): writing to c[n*i + j] is coalesced. All threads in a warp have the same
value for n and i by the assumption that n is a multiple of 32. Thus, they only differ by j which,
as explained above, is consecutive for consecutive threads of a warp.

(d) Coalesced global memory references, non-example (5 points): Give one example of a memory refer-
ence in the code from Figure 2 which cannot be coalesced. Briefly explain why the reference cannot be
coalesced.

Reading from a row in a row[k] is not coalesced. All threads in the same warp access the
same location of a row rather than consecutive locations. This means that the global memory
delivers a large block of data (128 bytes = 32 floats) and only one is used. A mitigating factor
is that each SM has a small cache, and it is likely that this data will be available in the cache on
subsequent iterations of the for-loop.

2. CUDA and Shared Memory (25 points)
Figure 3 shows an implementation of matrix multiplication using shared-memory and tiles (it is a corrected
version of the code from the March 24 lecture).
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(a) Bank conflicts (7 points): What is a shared-memory bank conflict? In general, is it desirable to have bank
conflicts? Briefly explain why or why not.

The shared memory for each SM is partitioned into banks. For the GPUs we have used, there are
32 banks, selected by bits 3 through 7 of the address. This means that consecutive floats are
stored in different banks. More generally, if two floats have indices that are different modulo 32,
they will be in different banks.
A conflict occurs if two threads in a warp access different locations in the same bank of shared-
memory for the same load or store. In general, bank conflicts are undesirable because they cause
the code to run slower. References to different banks can be handled in the same clock cycle, but
references to different locations in the same bank must be handled on consecutive clock cycles.
Thus, conflicts increase the number of clock cycles needed to complete a load or store operation.

(b) References to a sh (5 points): Consider the references to a sh in the statement:
sum += a sh[i][k] * b sh[k][j];
Do these references incur bank conflict(s)? Why or why not?

These references do not incur bank conflicts. For the read of a sh[i][k] all threads in the
same warp have the same values of i and k. Thus, they all access the same location in the same
bank. As described above, this is not a conflict.

(c) References to b sh (5 points): Consider the references to b sh in the statement:
sum += a sh[i][k] * b sh[k][j];
Do these references incur bank conflict(s)? Why or why not?

These references do not incur bank conflicts. For the read of b sh[k][j] the threads in a warp
access 32 consecutive locations of the shared memory. Thus, they access each of the 32 banks,
and there are no conflicts.

(d) Effect of syncthreads() (3 points): Briefly explain what a call to syncthreads() does.

syncthreads() implements a barrier: all threads in the block must reach the barrier before
any continue beyond it.

(e) Effect of not using syncthreads() (5 points): The code for the mmult2 kernel includes two calls
to syncthreads(). What is a possible error scenario if the second call to syncthreads() were
deleted: How would the threads (mis)behave and what variables’ and/or arrays’ values might be affected?

If the second syncthreads() were omitted, then a warp could complete its execution of the
for k loop and continue to loading values into a sh and b sh for the next iteration of the for
kk loop before some other warp in the block had completed its for k loop. This means that the
“slow” warp could read values from a sh or b sh that had been overwritten by the “fast” warp
and compute an incorrect result.

3. Memory Access vs Compute (25 points)
To simplify your formulas in the questions below, you may assume that the kernel is used to compute the product
of twoN -by-N matrices whereN is a multiple of 32 andN � 32. Count only floating-point operations (ignore
the cost of integer operations), and count each floating-point multiplication and each floating-point addition as
a separate operation even if they can be fused.

(a) Define CGMA (3 points): What is CGMA? Provide both the meaning of the acronym and a mathematical
formula for its value.

CGMA stands for “Compute to Global Memory Access ratio”. The formula is:

CGMA =
#FloatingPointOperations
#GlobalMemoryAccesses

where #FloatingPointOperations is the number of floating point operations performed by the
computation (e.g. a CUDA kernel), and #GlobalMemoryAccesses is the number of accesses
(loads + stores) to the global memory.
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(b) CGMA on GPUs (4 points): Briefly explain why CGMA matters on a GPU. Do we want a low value or
a high value for the CGMA?

Global memory bandwidth can easily be a performance bottleneck for GPU computations. To
fully utilize the computing capabilities of a GPU, we need algorithms that perform a fairly large
number of operations on each data value read from or written to the global memory. The CGMA
describes this ratio of the amount of computation to the number of memory references. In general,
higher values for CGMA are better as code with a higher value will usually have less performance
loss from memory bandwidth constraints.

(c) CGMA for CPUs? (3 points): Is CGMA important when designing serial algorithms for traditional
CPUs? Briefly explain your answer.

Yes. CPUs can execute a hundred instructions or more in the time that it takes to perform on
DRAM access. For CPUs, the usual solution is caches. To get good performance, the average
line loaded into a cache must be accessed a large number of times before it is replaced by another
line from the DRAM.

(d) Computing CGMA for brute force implementation (6 points): What is the CGMA for the code from
Figure 2?

Most of the computation takes place in the for k loop. Each iteration of this loop has one
floating point multiply to compute the product of a row[k] and b col[n*k] and one floating
point add to compute the sum of this product with the previous value of sum. Furthermore, each
iteration of the loop body has two accesses of global memory: one to read a row[k] and the
other to read b col[n*k]. Thus, there are two floating point operations and two global memory
accesses per loop iteration. This yields a CGMA = 1.
Notes: by convention, CGMA only counts floating point operations. Thus, we don’t count the
multiplication for n*k. Furthermore, an optimizing compiler will replace this with a new variable
(i.e. register) – let’s call it nk. The compile will generate code to set nk to zero at the beginning
of the loop and add n to nk at the end of each iteration.

(e) Computing CGMA for tiled implementation (9 points): What is the CGMA for the code from Figure 3?

We need to consider the for kk loop. The loads of a sh and b sh contribute a total of
2*TILE WIDTH*TILE WIDTH= 2*32*32 = 2048 global memory accesses. The for k loop
performs TILE WIDTH floating point multiplies and TILE WIDTH floating point adds for each
thread. That is 64 floating point operations per threads. There are a total of TILE WIDTH*TILE WIDTH
= 1024 threads in the block. Thus, the block performs 216 = 65536 floating point operations for
each iteration of the for kk loop. The CGMA is

CGMA = 65536
2048 = 32

4. CUDA and Performance (15 points)

(a) GFlops (5 points): The time to compute the product of two 1024-by-1024 matrices on lin19 using
the mmult2 kernel from Figure 3 is 0.02 seconds (the average for 100 trials). How many GFlops (giga-
floating-point operations per second) does this kernel achieve? Count each floating-point multiplication
and each floating-point addition as a separate operation, even if they can be fused, and ignore integer
operations.

A 1024-by-1024 matrix multiplication requires 10243 multiplies and 10243 adds, so (2)10243

floating point multiplications and additions. That’s a total of 2,147,483,648 floating point opera-
tions. These are performed in O.02 seconds; therefore,

GFlops = (2)10243

0.02 ∗ 1GFlop
230 Flops

= 100GFlops

Note: some solutions may use the conversion that 1 GFlop = 109 Flops, in which case the answer
is 107.37 GFlops. Either answer is acceptable.
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(b) Speed-up (5 points): As noted above, mmult2 takes 0.02 seconds to compute the product of two 1024-
by-1024 matrics on lin19. I wrote a reference implementation in C and it took 1.9 seconds running on
the CPU. What is the speed-up for the CUDA version from Figure 3 relative to this CPU version of matrix
multiplication?

For full credit, a more quantitative answer is expected.

SpeedUp = TCPU

TGPU

= 1.9s
0.02s

= 95

which is pretty impressive.
We can also express this as

SpeedUp =
(

TCPU

TGPU
− 1

)
=

(
1.9s
0.02s − 1

)
= 94 = 9400%

Either answer is acceptable.

(c) Faster GPUs (5 points): The GTX 550 Ti GPUs in the linXX machines are fairly old. The recently
released GTX 1080 has 2560 CUDA cores (i.e. SPs), can perform 8,228 GFlops, and has a global memory
bandwidth of 320 GBytes/second. What is the minimum CGMA needed for the GTX 1080 to achieve its
maximum GFlops?

320 GBytes/second is 80 Gfloats/second (1 float is 4 bytes). Thus, the required CGMA is

CGMAmin = 8,228GFlops
80GFloats/s

= 102.85

5. Short Answer (23 points)

(a) Map Reduce (6 points): How does the implementation of map-reduce described in MapReduce: Simpli-
fied Data Processing on Large Clusters handle node failures (i.e. machine crashes)?

The system makes use of the functional programming features of referential transparency and no
side-effects.
Key features: A master node pings each worker periodically to detect failures and restarts failed
workers.
Additional features: Map workers which fail must be restarted whether they completed or not
because output is only stored locally. Reduce workers only need to be restarted if they did not
complete because they write output to the distributed file system. The system is vulnerable to
master node failures. Reduce nodes which already received data from a failed map node will use
that data rather than asking for data from the reassigned map node. If map and reduce operators
are deterministic, it will not matter which map worker’s results are used. If map or reduce are not
deterministic, then the results satisfy a relaxed form of consistency.

(b) Shared Memory (3 points): A vendor of shared memory multi-processors is trying to convince you to buy
one by arguing that all cores on a shared memory machine can access all memory locations; consequently,
parallel software implemented on these machines will not suffer from communication overhead. Briefly
explain why this argument is false on modern hardware.

Modern shared memory processors have complicated caching protocols and often non-uniform
access times even to the global memory. The only other option—a flat memory without any
caches—is far too slow compared to the processor speed. Any memory location which is written
by more than one core will cause communication of data between the processors (either directly
between caches or by forcing a flush and then read to main memory). Parallel algorithms on
shared memory machines must also typically implement synchronization or locking, which will
require communication.
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(c) PReach (6 points): What is load balancing?

Load balancing refers to any method for moving tasks between processes to make sure that all
process complete at roughly the same time. Does not need to be part of the answer, but we want
load balancing to avoid performance loss due to idle processors when one process finishes its
work early, and other processes still have a large amount of work to do.

How does PReach implement load balancing?
PReach uses a method that the authors called “light weight load balancing”. The key idea is that
processes send the size of their current work queue along with other data when sending newly
encountered states to other workers. If a worker discovers that its work queue is much larger than
that of some other task, it sends some of its work to the other process. They used a threshold of
a factor of five difference in the work queue size. They found that this coarse-grained method for
balancing incurred less communication overhead than finer grained approaches.
Note that PReach does use a “credit” system to manage communication between processors, but
that is only to keep message queues from becoming too long (which appears to lead to quadratic
message acceptance cost in the Erlang runtime); it is not used for load balancing.

(d) The 0-1 Principle and Sorting Networks (8 points): Consider the following algorithm for sorting 0-1
sequences: Count the number of zeros in the input sequence and then create an output sequence of the
same length as the input sequence with the appropriate number of zeros at the front and the remaining
entries set to one. This algorithm cannot sort sequences of arbitrary numbers.
Can this algorithm be implemented by a sorting network? If so, sketch the sorting network for sequences
of size 4. If not, explain why not.

This algorithm cannot be implemented by a sorting network. There are several possible proofs.
• Sorting networks satisfy the 0-1 principle, so if they sort all 0-1 sequences correctly they

will sort all sequences correctly. This algorithm sorts 0-1 sequences correctly but cannot
sort other sequences correctly; hence it does not satisfy the 0-1 principle and cannot be
implemented with a sorting network.

• The proposed algorithm uses a conditional-increment operation but sorting networks only
have the compare-and-swap operation.

• We can inductively show that the outputs of any sorting network are a permutation of the
inputs. The proposed algorithm can only produce zeros or ones, so it will not produce a
permutation of the input if the input contains any value that is not a zero or a one. Therefore,
this computation cannot be performed by a sorting network.

6. Map, Reduce and Scan (15 points) A sequence of numbers {xi}Ni=1 of length N is already distributed across
P processors with each processor pi having Ki elements where N � K ≥ Ki ≥ K for some maximum K and
minimum K > 0 number of elements. When generating an output, it can be distributed across the processors
in any convenient manner (including not distributed in the case of scalar outputs). In answering the questions
below assume that local operations take 1 unit of time and sending a message of any length between processors
takes λ units of time for some λ > 1.

(a) Mean (2 points): We would like to compute the mean of all of the entries in the data sequence; in other
words, the mean of all entries {xi}Ni=1. Is this a map, reduce or scan operation?
It is a reduce.

(b) Complexity of Mean (5 points): What is the “big-O” complexity (in terms of problem parameters N , P ,
K, K and/or λ) of computing the mean of the entire sequence? Note that your “big-O” analysis may have
more than one “leading” term depending on how the problem parameters combine.
O(K+λ logP ), where the first term is an upper bound on the cost of computing the sum on each individual
processor and the second term is the cost of the reduce tree.

(c) Running Mean (2 points): We would like to generate a new sequence containing the running mean of all
of the entries in the data sequence; in other words, entry j of the output sequence will contain the mean of
all entries {xi}ji=1. Is this a map, reduce or scan operation?
It is a scan.
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(d) Square (2 points): We would like to generate a new sequence containing the squares of all of the entries
in the data sequence; in other words, entry j of the output sequence will contain x2j . Is this a map, reduce
or scan operation?
It is a map.

(e) Relative communication cost (4 points): Rank the three problems “mean”, “square” and “running mean”
from least to most communication. Note that constant factors may determine the ranking. Briefly justify
your ranking.

square (map) < mean (reduce) ≤ running mean (scan).

The precise communication needs depend on if a single master process must initiate the operation
or if all processes can self-initiate. In the former case, there is at least one pass down the tree
to initiate the processors. The map operation requires no further communication. The reduce
operation requires at least one pass back up the tree (if we are willing to get the answer only at
the root) or a pass up and a pass down (if we want the answer everywhere). The scan operation
always requires a pass up and a pass down the tree.
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• Number of SMs: 4
• Warp size: 32
• Maximum number of threads per block: 1024
• Maximum number of resident blocks per SM: 8
• Maximum number of resident warps per SM: 48
• Maximum number of resident threads per SM: 1536
• Register file capacity per SM: 128Kbytes
• Shared memory capacity per SM: 48Kbytes
• Number of banks of shared memory for each SM: 32
• Global memory capacity: 1 GByte

Figure 1: GTX 550 Ti specifications

global void mmult1(float *a, float *b, float *c, uint32 t n) {
uint32 t i = blockDim.y*blockIdx.y + threadIdx.y; // my row index
uint32 t j = blockDim.x*blockIdx.x + threadIdx.x; // my column index
if((i < n) && (j < n)) {

float *a row = a + n*i;
float *b col = b + j;
float sum = 0.0f;
for(uint32 t k = 0; k < n; k++)

sum += a row[k] * b col[n*k];
c[n*i + j] = sum;

}
}

Figure 2: Brute-force CUDA implementation of matrix multiplication. Arguments a and b are the input matrices, c is
the output matrix, and n is the problem size (all matrices are n × n).
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#define TILE WIDTH 32

global void mmult2(float *a, float *b, float *c, uint32 t n) {
shared float a sh[TILE WIDTH][TILE WIDTH];
shared float b sh[TILE WIDTH][TILE WIDTH];

uint32 t i blk = blockIdx.y; // my block-row index
uint32 t j blk = blockIdx.x; // my block-column index
uint32 t i = threadIdx.y; // row-index within this block
uint32 t j = threadIdx.x; // column-index within this block
if((i blk*blockDim.y + i < n) && (j blk*blockDim.x + j) < n) {

float *a row blk = a + n*i blk*TILE WIDTH; // start of our row of blocks
float *b col blk = b + j blk*TILE WIDTH; // start of our column of blocks
float sum = 0.0f;

// outer iteration: over the blocks of a row blk and b col blk
for(uint32 t kk = 0; kk < n; kk += TILE WIDTH) {

// load blocks from a and b
a sh[i][j] = a row blk[n*i + kk + j];
b sh[i][j] = b col blk[n*(kk+i) + j];
syncthreads(); // first sync

// inner iteration: over the elements of a sh and b sh
uint32 t k top = min(TILE WIDTH, n-kk);
for(uint32 t k = 0; k < k top; k++)

sum += a sh[i][k] * b sh[k][j];
syncthreads(); // second sync

}
// copy our result to the c matrix in global memory
c[n * (i blk*TILE WIDTH + i) + (j blk*TILE WIDTH + j)] = sum;

}
}

Figure 3: Matrix multiplication using CUDA shared-memory. Arguments a and b are the input matrices, c is the
output matrix, and n is the problem size (all matrices are n × n).


