
CpSc 418 Mini-Assignment 3 Due: Feb. 8, 2016, 10:00am

20 points. Please submit your solution using the handin program. Submit your solution as
cs418 mini3

Your submission should consist of the one file called mini3.erl or mini3.txt sepending on which problem you
choose to solve.

Submit a solution to any one of the three questions below.

1. Erlang Review Let LL be a list-of-lists.

(a) (5 points) Write an Erlang function, is lol(X) that returns true iff X is a list and every element of X is a
list. Note that is lol([]) -> true because [] is a list and every element of [] (there aren’t any) is a
list as well.

(b) (5 points) Write an Erlang function, is rect(X) that returns true iff X is a list and all elements of X are lists
of the same length.

(c) (10 points) Write an Erlang function, transpose(X) such that
• transpose([]) -> [];
• If X is a list where every element of X is the empty list, then transposeX -> [];
• If is rect(X), X is non-empty, and the elements of X are non-empty lists, let N1 = length(X),

and N2 = length(hd(X)). Then, transposeX -> Y where is rect(Y), length(Y) =:=
N2, every element of Y is a list of length N1, and lists:nth(I, lists:nth(J, Y)) =:=
lists:nth(J, lists:nth(I, X)) for all 0 < I =< N1 and 0 < J =< N2.

• If not is rect(X) then transpose(X) fails with an error.

Note: I will not ask you to write this much code on the midterm. OTOH, I might state a similar problem, write a
partial solution, and ask you to fill-in 3-5 lines.

2. Reduce and/or Scan Let

goodness([]) -> 0;
goodness([good | Tl]) -> 1 + goodness(Tl);
goodness([bad | Tl]) -> -1 + goodness(Tl);
goodness([| Tl]) -> goodness(Tl);

(a) (10 points) Write a function, stop while your ahead(List) that returns {I, G}where 0 =< I =<
length(List) maximizes G = goodness(element(1, lists:split(I, List))). If there’s
a tie, return the smallest such I.

(b) 10 points Use wtree:reduce to write
stop while your ahead par(W, Key) that returns {I, G} as above for the list associated with

Key that is distributed across the workers of codeW.

3. Speed-Up Consider a problem that can be executed sequentially in time (20ns) ∗N log2N , where N is the size of
the input problem. A parallel implementation with P processors takes time:

(20ns) ∗ N
P

log2

(
N

P

)
+

(
10ns ∗ N

P
+ λ

)
log2(P)(log2(P) + 1)/2

Where λ is the cost of a communication action. For this problem, assume λ = 5µs.

(a) (10 points) Plot speed-up as a function of P for P chosen from 4, 16, 64, and 256, and for N chosen from 210,
220, and 230.

(b) (10 points) How large must N be to get a speed-up of at least P/2 for each of the values of P suggested
above? You only need to consider power-of-two values for N , but you do need to consider powers of two
other than the ones listed for part a.

Why?
Review for the midterm.

