
CpSc 418 Mini-Assignment 2 Due: Jan. 11, 2016, 10:00am

30 points. Please submit your solution using the handin program. Submit your solution as
cs418 mini2

Your submission should consist of the one file called mini2.erl.
I will post a template for mini2.erl and a test module, mini2 test.erl here, but that might not happen until

Thursday morning. Because these problems are based on examples from LYSE , you can cut-and-paste the code from
there to get templates.

Building a better refrigerator.
Starting from the final version of the refrigerator example at the end of More on Multiprocessing in LYSE , add the
following features:

1. Grocery shopping, (10 points)
After going to the grocery store, our brave refrigerator owner comes home with a bag of groceries, and puts all of
them in the refrigerator (whether or not that makes sense – just ask my wife). We’ll represent a bag of groceries as
a list (of course) of tuples (why not?). In particular, our list has the form:

[{What, HowMany}, ...]
where What is an atom and HowMany is an integer. For example, the list

[{banana, 5}, {egg, 12}, {apatosaurus, 3}]
means I bought five bananas, a dozen eggs, and three apatosaurs and put them all in the refrigerator.

Write mini2:fridge3a and mini2:store3 based on mini2:fridge2 and mini2:store2 from LYSE
so that mini2:store3(Pid, List) stores the items from a list as described above in the refrigerator, and Pid
is the pid of the refrigerator. Of course, mini2:store3(Pid, Item) where Item is an atom should store one
Item in the refrigerator. We want our new refrigerator to be upward compatible with the old one.

2. Making Sandwiches, (20 points)
Let’s say I want to make a banana and apatosaurus sandwich. Obviously, I’ll go to the refrigerator remove one
banana, one apatosaurus, and one bread. If they aren’t all in the fridge, I don’t want to remove any of them – it’s
too much of a hassle stuffing the apatosaurs back into the refrigerator.

Write mini2:fridge3 and mini2:take3 based on mini2:fridge3a and mini2:take2 so that
mini2:take3(Pid, List) removes the items in List from the refrigerator if they are present, and re-
turns {ok, List}. If there is something missing in the refrigerator, return {not found, List}. Of course,
mini2:take3(Pid, Item) where Item is an atom should remove one Item from the refrigerator. Again,
we want our new refrigerator to be upward compatible with the old one.

If for some reason you can’t solve question 1, you can build your solution to this problem (i.e. implementations of
mini2:fridge3 and mini2:take3 on the original code from LYSE . To get full credit, your solution must
provide mini2:fridge3, mini2:store3, and mini2:take3 that support both store and take of lists of
items.

3. Even More Fun, (0 points)
We could take this further. We could add an inventory function that returns a list of everything in the fridge. We
could make a version of take that blocks until the requested items are in the fridge – waiting for another process
to perform the store operation– “Honey, could you run down to IGA and pick up some more apatosaurs?”.

BUT, this is a mini assignment; so, we’ll stop here.

Why?
Get some experience with Erlang processes, sending and receiving messages, and more pattern matching. Make sure
you’ve read the stuff on processes from LYSE so I can build on that in lecture.

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/mini/2/code.html
http://learnyousomeerlang.com
http://learnyousomeerlang.com/more-on-multiprocessing
http://learnyousomeerlang.com
http://learnyousomeerlang.com
http://learnyousomeerlang.com
http://learnyousomeerlang.com

