
Course Review

Mark Greenstreet

CpSc 418 – April 8, 2016

Algorithms
Architectures
Performance
Paradigms

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 1 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Parallel Algorithms

data-parallel maps
tree-structured algorithms
sorting

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 2 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Data-Parallel maps

simulation
I for multiple (initial) conditions: logistic map
I Monte-Carlo simulation: percolation
I Many applications:

F Scientific computing: molecular dynamics, climate modeling,
quantum mechanics, social sciences, . . .

F Financial (risk analysis), games (generate move-trees)

matrix multiplication
I The dot-products for each result element can be computed

independently
I Or, compute rows, columns, or blocks independently.

map-reduce
I Really data-parallel with a “sort” (or scatter, if you prefer) step in the

middle.
I Useful for analysing large data-sets.

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 3 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Reduce and Scan

Tree-structure for communication
Can be used with any associative operator.
Obvious examples include: sum, product, max, and similar – both
for the final total (reduce) and the prefix versions (scan).
Many other problems can be formulated as reduce or scan if they
can be performed using an associative operator.

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 4 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Sorting
Sorting Networks

I Describe a sorting-network as a composition of compare-and-swap
modules.

I Describe a sorting-network as a decision tree.
I Given a small network of compare-and-swap modules, draw the

decision tree.
I Given a small decision tree, draw the network of

compare-and-swap modules.
I Given a small sorting network, fill in what it computes for a specified

input.
The 0-1 principle

I Be able to state it.
I Explain how it is used in deriving/justifying the bitonic sort

algorithm.
I Explain why it applies to sorting networks, but not arbitrary

programs.
Bitonic sort

I It’s merge-sort, with bitonic merge
I What is a bitonic sequence?
I The key ideas behind bitonic merge
I ComplexityMark Greenstreet Course Review CS 418 – Apr. 8, 2016 5 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Bitonic Questions

How the odd and even subsequences have nearly matched
numbers of ones.
Why this makes the final step of merge “easy”.
The recursive structure of the merge.
O(N log2 N) comparisons
O(log2 N) time
be able to justify both (in simple terms).

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 6 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Parallel Architectures

slide 8Parallelism in CPU architectures
slide 9Message passing architectures
slide 10Shared memory architectures
slide 11Data parallel architectures

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 7 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Parallelism in CPU Architectures

Pipelined execution
I The goal: one instruction per cycle
I Pipelining: an assembly line for instruction execution
I Data hazards:

F bypassing eliminates many hazards,
F for the others, the pipeline stalls.

I Control hazards:
F Move branch execution to a early pipeline stage
F Expose the hazard: delay slots.
F Or stall – common on multithreaded architectures.

Supescalar
I The goal: many instructions per cycle
I The solution: dynamically compute dependencies, resolve

instructions when dependencies resolved.
I Key techniques: register renaming, branch prediction and

speculation.
I Scalability: poor – hardware size grows as Parallelism2.

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 8 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Message Message Passing Architectures

Many machines communicating through a network.
Issues of network topology:

I Network diameter: determines worst-case latency.
I Cross-section bandwidth: performance for communication intensive

algorithms.
I Local bandwidth: often, algorithms are faster if they exploit

communication between neigbouring machines.
I Scalability: if the topology isn’t naturally 3-dimensional, the

machine becomes “all wire” as the number of processors grow.
In practice:

I Clusters for commercial applications usually use commodity
networks (e.g. ethernet).

I Scientific super computers are message-passing machines that
use high-performance networks (e.g. infiniband).

I In either case, the networking hardware can be as expensive as the
computers themselves.

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 9 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Shared memory Architectures

Dividing memory into banks, and using a switching network
between the processors and the memory

I This is the approach of 1970’s shared memroy machines.
I It’s also used for the on-chip shared memory of GPUs.

Use caches and a coherence protocol
I The approach used for multi-core CPUs
I MESI: be able to describe the protocol, explain what happens for

reads and writes.
I Weak-consistency: know that real CPUs don’t quite provide

sequential consistency
F Use a thread library
F In the rare case that’s note enough, you’ll need to learn about the

subtleties of real-world, cache-coherence protocols (a “known
unknown”).

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 10 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Data parallel architectures

GPU and SIMD execution
The basic structure of a “streaming multiprocessor”
Predicated execution and branch divergence.
Exposed memory hierarchy

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 11 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Parallel Performance

slide 13Speed-Up
slide 14Overhead
slide 15Performance Modeling

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 12 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Speed-Up

Definition
Amdahl’s law
Superlinear speed-up
Why speed-up can be hard to measure in practice

I Difficulties in defining the “best” sequential implementation
I Doesn’t exist, no-time to implement, couldn’t run on a realistic

problem size, . . .

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 13 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Overhead

Types of overhead
I Be able to describe and give examples

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 14 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Model

Communcation costs matter.
The CTA λ model:

I Communicating N “words” costs λ+ N.
I Why do both terms matter in the model?

Implicit communication such as synchronization and
shared-memory accesses also incurs these costs.

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 15 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


Parallel Paradigms

slide 17Message Passing
slide 18Data Parallel
slide 19Shared Memory

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 16 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


The Message Passing Paradigm

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 17 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


The Data Parallel Paradigm

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 18 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016


The Shared Memory Paradigm

Mark Greenstreet Course Review CS 418 – Apr. 8, 2016 19 / 19

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

