Course Review

Mark Greenstreet

CpSc 418 — April 8, 2016

@ Algorithms
@ Architectures
@ Performance
@ Paradigms

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 1/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Parallel Algorithms

@ data-parallel maps
@ tree-structured algorithms
@ sorting

Mark Greenstreet Course Review


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Data-Parallel maps

@ simulation
» for multiple (initial) conditions: logistic map
» Monte-Carlo simulation: percolation
» Many applications:

* Scientific computing: molecular dynamics, climate modeling,
quantum mechanics, social sciences, ...
* Financial (risk analysis), games (generate move-trees)

@ matrix multiplication
» The dot-products for each result element can be computed
independently
» Or, compute rows, columns, or blocks independently.
@ map-reduce

» Really data-parallel with a “sort” (or scatter, if you prefer) step in the
middle.
» Useful for analysing large data-sets.

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 3/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Reduce and Scan

@ Tree-structure for communication
@ Can be used with any associative operator.

@ Obvious examples include: sum, product, max, and similar — both
for the final total (reduce) and the prefix versions (scan).

@ Many other problems can be formulated as reduce or scan if they
can be performed using an associative operator.

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 4/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Sorting

@ Sorting Networks
» Describe a sorting-network as a composition of compare-and-swap
modules.
» Describe a sorting-network as a decision tree.
» Given a small network of compare-and-swap modules, draw the
decision tree.
» Given a small decision tree, draw the network of
compare-and-swap modules.
» Given a small sorting network, fill in what it computes for a specified
input.
@ The 0-1 principle
» Be able to state it.
» Explain how it is used in deriving/justifying the bitonic sort
algorithm.
» Explain why it applies to sorting networks, but not arbitrary
programs.
@ Bitonic sort
» It's merge-sort, with bitonic merge
> What is a bltonlc sequence’?

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 5/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Bitonic Questions

@ How the odd and even subsequences have nearly matched
numbers of ones.

@ Why this makes the final step of merge “easy”.
@ The recursive structure of the merge.

@ O(Nlog? N) comparisons

@ O(log? N) time

@ be able to justify both (in simple terms).

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 6/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Parallel Architectures

@ slide 8Parallelism in CPU architectures
@ slide 9Message passing architectures
@ slide 10Shared memory architectures
@ slide 11Data parallel architectures

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 7/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Parallelism in CPU Architectures

@ Pipelined execution

» The goal: one instruction per cycle
» Pipelining: an assembly line for instruction execution
» Data hazards:
* bypassing eliminates many hazards,
* for the others, the pipeline stalls.
» Control hazards:
* Move branch execution to a early pipeline stage
* Expose the hazard: delay slots.
* Or stall — common on multithreaded architectures.
@ Supescalar
» The goal: many instructions per cycle
» The solution: dynamically compute dependencies, resolve
instructions when dependencies resolved.
» Key techniques: register renaming, branch prediction and
speculation.
» Scalability: poor — hardware size grows as Parallelism?.

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 8/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Message Message Passing Architectures

@ Many machines communicating through a network.
@ Issues of network topology:

» Network diameter: determines worst-case latency.

» Cross-section bandwidth: performance for communication intensive
algorithms.

» Local bandwidth: often, algorithms are faster if they exploit
communication between neigbouring machines.

» Scalability: if the topology isn’t naturally 3-dimensional, the
machine becomes “all wire” as the number of processors grow.

@ In practice:

» Clusters for commercial applications usually use commodity
networks (e.g. ethernet).

» Scientific super computers are message-passing machines that
use high-performance networks (e.g. infiniband).

» In either case, the networking hardware can be as expensive as the
computers themselves.

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 9/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Shared memory Architectures

@ Dividing memory into banks, and using a switching network
between the processors and the memory
» This is the approach of 1970’s shared memroy machines.
» It's also used for the on-chip shared memory of GPUs.

@ Use caches and a coherence protocol

» The approach used for multi-core CPUs
» MESI: be able to describe the protocol, explain what happens for
reads and writes.
» Weak-consistency: know that real CPUs don’t quite provide
sequential consistency
* Use a thread library
* In the rare case that’'s note enough, you'll need to learn about the
subtleties of real-world, cache-coherence protocols (a “known
unknown”).

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 10/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Data parallel architectures

@ GPU and SIMD execution

@ The basic structure of a “streaming multiprocessor”
@ Predicated execution and branch divergence.

@ Exposed memory hierarchy

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 11/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Parallel Performance

@ slide 13Speed-Up
@ slide 140Overhead
@ slide 15Performance Modeling

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 12/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Speed-Up

@ Definition
@ Amdahl’s law
@ Superlinear speed-up

@ Why speed-up can be hard to measure in practice

» Difficulties in defining the “best” sequential implementation
» Doesn't exist, no-time to implement, couldn’t run on a realistic
problem size, ...

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 13/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Overhead

@ Types of overhead
» Be able to describe and give examples

Mark Greenstreet Course Review


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Model

@ Communcation costs matter.
@ The CTA X model:

» Communicating N “words” costs A + N.
» Why do both terms matter in the model?

@ Implicit communication such as synchronization and
shared-memory accesses also incurs these costs.

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 15/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

Parallel Paradigms

@ slide 17Message Passing
@ slide 18Data Parallel
@ slide 19Shared Memory

Mark Greenstreet Course Review CS 418 — Apr. 8, 2016 16/19


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

The Message Passing Paradigm

Mark Greenstreet Course Review


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

The Data Parallel Paradigm

Mark Greenstreet Course Review


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

The Shared Memory Paradigm

Mark Greenstreet Course Review


http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_8
https://en.wikipedia.org/wiki/2016

