Map-Reduce

Mark Greenstreet

CpSc 418 — April 6, 2016

@ Problem Domain: Large-Scale Data Analysis
@ The Map-Reduce Pattern

@ Implementation Issues

@ Results

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 1/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Portrait of a Data Centre

@ Sketch of a big data center:
» Thousands (or tens of thousands) of machines, each with its own
disk.
» File system is distributed across these machines.
* The file system is redundant: machines will fail
» Use commodity (e.g. Cisco) networks and routers.

* Each machine has a mainstream network interface (e.g. 10Gb
ethernet)

* Cross-section bandwidth is way smaller than the number of machines
times the per-machine bandwidth.

@ Need to analyse the huge data sets stored on these machines.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 2/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Problem Domain: Large-Scale Data Analysis

@ Data analysis requires:
» Fetching the relevant records.
» Performing analysis of related records.
» Summarizing the results.
@ Example: word frequency in documents
@ Example: core curriculum
» How do 200-level courses impact success in 400-level courses?
» Look at all transcripts.
» Analyze relationships for (2XX, 4YY) pairs.
@ Problem statement: Google noted that each such problem was
getting its own custom code:
» All of that code development is expensive.
» Code can fail when the system is changed.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 3/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

The Map-Reduce Pattern

@ All data is represented as lists of (Key, Value) pairs.
@ map

» For each (Key1, Value1) pair of the input,
» Produce a list of (Key2, ValueZ2) pairs for the output.

@ reduce

» All (Key2, Value2) pairs with the same Key2 are combined using the
reduce function.
» This produces a (Key2, [colorCodeColorlist of Value2]) result.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 4/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Map-Reduce, Curriculum

@ The (Keyl1, Value1) pairs:
» Key could be the student number for the transcript
» Valueis a list of (CourseNumber, Grade) pairs.

@ map: for each 400-level course on the transcript, associate it with
the grade for that course and a list of all the 200-level courses
taken by that student and the grades for those courses.

» KeyZ2is a 400-level course number
» Value2is (Grade400, [(Course200, Grade200), ...]), where

* Grade400 is the grade in the 400-level course, Key2.
* Course200 is the course-number for a 200-level course on the same

transcript.
* Grade200 is the grade for that course on the same transcript.

* with one entry in the list for each 200-level course.

@ reduce: just returns (Grade400, [(Course200, Grade200), ...]).
@ Then, we do another map to compute a linear best-fit for the data.
» From there, we could do more operations to further analyze the
data.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 5/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Map-Reduce, Word-Count

From the paper:
@ The (Key1, Value1) are the document name and document text.

@ map: produce a list of (Word, Count) pairs, where Word is each
word that appears in the document, and Count is the number of
times that it occurs.

@ reduce: for each Word, add up the Count values from all
documents.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 6/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Programming Model

The user creates a mapreduce specification object (C++)

@ provide the map and reduce functions (presumably as methods of
the object).

@ fill-in fields with the names of the input and output files.
@ set other tuning parameters [optional].
@ Invoke the MapReduce function.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 7/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Execution

@ The MapReduce function spawns M map tasks, R reduce tasks,
and one master.
@ Each map task:

>

vV vy VvYy

is assigned a fragment of the input file by the master — these
fragments are called splits;

reads the records from that file;

performs the map operation;

writes the results to a temporary files;

informs the master of its progress.

@ Each reduce task:

vV vyVvYyy

v

is notified of map results by the master;
requests the data from the map tasks;
performs the reduce operation;

writes the result to a file;

notifies the master when it is done.

@ When all the reduce computations are complete, the master
sends a message to wake up the user process, and the
MapReduce function returns.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016

8/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Hashing

How do the intermediate results get from the map process to the
reduce process?
@ When the map-task is spawned it is told how many reduce
processes there are.
@ Each (Key2, Value2) is written to a different file according to
hash(Key2) mod R.
@ The master tells the reduce tasks which file to read from each
map task.
@ The user can provide their own hash function if the default one
isn’'t optimal.
» If the default hash doesn’t balance the workload.
» There is a reason to cluster certain Key2 tuples on the same task.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 9/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Bad Things Happen

@ Machines fail, especially if you have thousands of them.

» If the average lifetime of a machine is five years,
» then a data center with 10,000 machines has a machine fail every
four hours!

@ Routers and other network infrastructure can fail, leaving
machines isolated.

@ Maintenance can take machines off-line.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 10/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Fault Tolerance

@ Key Ildea:
» The map and reduce operations are based on functional
programming ideas — they don’t have side-effects.
» If a worker crashes, it’s as if it never existed.
» The master can restart the task on another machine.

@ The master periodically pings the tasks, and restarts dead ones.

» If a completed map task fails, it is reexecuted because a reduce
task may need the results.

» If a completed reduce task fails, no action is needed — the results
has been stored in the global (redundant, fault-tolerant) file system.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 11/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Semantics

@ If the map and reduce functions are deterministic, then the result
of MapReduce is the same as a sequential execution.
» This is really cool!
» There is a sequential implementation of MapReduce:
* Read all of the (Key1, Value1) pairs from the input file.
* Write all of the (Key2, [list of ValueZ2]) tuples to an intermediate file.
* Sort the intermediate file by the Key2 values.
* Perform the reduce operation for each Key2 value and write the
results to the output file.

@ If the map and reduce functions are not-deterministic, then
» It's a bit more complicated, but it’s still reasonable.
» If the reduce tasks are non-deterministic, then the result for each
KeyZ2 is the result from some sequential implementation.
» The paper doesn’t talk about non-determinism for map, but | expect
it would be similar.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 12/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Work Stealing

@ Sometimes a worker is slow — stragglers.

@ If the MapReduce task is near completion, the master assigns
straggler tasks to idle processors.

@ These are called backup tasks.

@ Either the original or the backup process can complete the task.

@ In practice, this work stealing by backup tasks:

» Only adds a few percent to the total compute resources used.
» Can result in substantial performance improvements:

* The paper reported a 44% slow-down when the sort benchmark was
run without backup tasks.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 13/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Performance Issues

@ The master attempts to schedule map tasks on processor that
holds the split being processed, or are nearby (by the network
connections).

@ Reduce tasks must read intermediate results from many map
tasks

» In general, every reduce task could read from every map task.
» This could easily saturate the cross-section bandwidth of the data
center.

@ For good performance, the map tasks should be filters that output
much less data than they read.

» This isn’t always possible.
» But it’s good to find ways to represent the intermediate data as
compactly as possible.

@ Partial reduction can also lower the bandwidth needed by map
reduce

» Each map task does a reduce for each Key2.
» Changes the semantics of Map Reduce — but no change if reduce
is associative and commutative.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 14/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

MapReduce targets big data:

@ Reading large disk files takes seconds.

@ Communication between standard linux machines with generic
networks takes milliseconds.

@ The task needs to be big enough to justify these overheads:

» We've just increased)\ by a few orders of magnitude.
» MapReduce makes sense if the task is disk-limitted and harnassing
a few thousand disks provides the necessary disk bandwidth.
* Think of it as “disk parallelism” instead of “CPU parallelism”.
* Note: big-data companies like Amazon, Facebook and Google are
moving to using FLASH memory and DRAM instead of disks, exactly
because of these /O bottlenecks.

» Or, if you have a really huge data set, and the compute time
dominates all of these overheads.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 15/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Results

@ Good performance on ~ 2000 machines: grep and sort.
@ In widespread use at Google.

@ Continuing to grow in use, especially through its open source
implementation: Hadoop.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 16/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

More Examples

Searching for 'map reduce’ on http://scholar.google.ca:

Hive: a warehousing solution over a map-reduce framework
Map-Reduce for Machine Learning on Multicore

Upper and lower bounds on the cost of a map-reduce computation

°
°
@ Twister: a runtime for iterative MapReduce
°
°

MapReduce Algorithms for Big Data Analysis

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 17/20

http://scholar.google.ca
http://dx.doi.org/10.14778/1687553.1687609
https://papers.nips.cc/paper/3150-map-reduce-for-machine-learning-on-multicore
http://dx.doi.org/10.1145/1851476.1851593
http://dx.doi.org/10.14778/2535570.2488334
http://dx.doi.org/10.1007/978-3-642-37134-9_3
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Summary

@ MapReduce is a parallel programming pattern
» Data are represented by lists of (Key, Value) pairs.
» A user provided map function takes each (Key1, Value1) pair of the
input, and produces a (possibly empty) list of (Key2, Value2) pairs.
» A user provided reduce function is applied to the list of Value2
values for each Key2.
@ Details of the parallel implementation are handled by the
MapReduce API:
» Creating workers processes, sending messages between
machines, etc.
» Handling failures and slow nodes.
@ Performance is often bandwidth limited
» Locality matters: perform map on the machine with the data.
» If map is an effective filter (bytes out < bytes in), then we can
reduce the impact of network congestion.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 18/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Review 1

@ How does map-reduce distribute work between map tasks?

@ How does map-reduce distribute work between reduce tasks?
@ How does map-reduce handle machine or failures?

@ How does map-reduce handle slow (i.e. straggler) machines?

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 19/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Review 2

@ What are the requirements for the type-signatures of the map and
reduce functions a map-reduce?
» Why did this force me to use an extra “map” step in my “Curriculum
design” example? In other words, why couldn’t reduce compute the
linear regression?

@ Let’s say that | have a table of airline flights. Each entry is of the
form

(DepartCity, DepartTime, ArriveCity, ArriveTime)
| want to fly from Vancouver to Timbuktu, but there are no direct
flights. Let’s say | want to find the fastest route with one stop. How
could | do this using map reduce?
» Hint: use the intermediate city as Key2.
» For simplicity, assume that all times are GMT (no need for
time-zone conversion).
» How does map filter out irrelevant flights?

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 20/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Supplementary Material: Percolation and HW4

Why?
@ Monte-Carlo simulation is an important application of parallel
computing.

» Monte-Carlo simulation is named after the gambling center in
Monaco.

» The idea is to simulate a randomized model.

» Statistical properties are computed from the results of a large
number of simulations.

@ Examples of Monte-Carlo simulation

Investment portfolio analysis.
Modeling the spread of epidemics.
Climate modeling.

Machine learning.

@ Percolation is an example of a very simple, random process, that
we can study by Monte Carlo simulation

v

v vyy

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 21/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

What is Percolation?

@ The original problem arose from modeling the seepage of fluids
through rock.
» Rocks have microscopic pores.

* For some rocks, water, oil, or gasses can slowly diffuse through them.
* Other rocks are impervious to such flow, even though they have tiny
pores.
* Why?
» It has to do with the density and structure of the pores.
» Percolation matters for oil and gas exploration, building
construction, and many other areas.

@ We can formulate the percolation question as a question about
graphs.
» Then look for simple examples to understand the key ideas.
@ Percolation by Grimmett is an excellent book,
» but it is in no way needed for this course!

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 22/20

http://link.springer.com.ezproxy.library.ubc.ca/chapter/10.1007/978-3-662-03981-6_1
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

The percolation model for HW4

@ Given positive integers, W and H (for the width and height), and
0 < p < 1 (the marking probability), we’ll construct a directed
graph, G = {V, E} where
» V={v;|0<i<h 0<j< wis the set of vertices.
» E= {(V,'J', Vi + ‘l,j'),(V,‘,j7 V/+1,(j+ 1) mod W)|0 <ji< h,O §j< W}
is the set of edges.
» Every vertex, vy is “marked”.
» All other vertices are marked with probability p.
@ What is the probability that there is a path from a vertex in row 0 to
a vertex in row h— 1 for which every vertex on the path is marked?

@ I'll draw a picture on the board and add it to the final version of the
slides.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 23/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

Simulating Percolation

@ Create an array of W vertices, and set them all to 1.
for i = 1 to H-1 {
for j = 0 to W-1 {
vvii, 3] = (v[i-1,3] | v[i-1, (3-1) mod w]) & bernoul.
v = Vv;
}
}

@ Where bernoulli (p) is a random variable that is 1 with
probability p and 0 with probabily 1-p.

@ Each call to bernoulli produces an independent random
variable with this distribution.

@ There is a path from a vertex in row 0 to a vertex in row H — 1 iff
there is some j at the end of the simulation such that v [5] is 1.

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 24/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

More stuff

@ The critical probability.
@ Using GPUs to make the code run fast.
» The random-number generation bottleneck.

* Use separate kernels for random-number generation and network
simulation.

» The memory bandwidth bottleneck.
* Pack random bits into integers.
» The vertex update bottleneck.
* Use bitwise logical operators.
» Now, what are the performance issues?

Mark Greenstreet Map-Reduce CS 418 — Apr. 6, 2016 25/20

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/April_6
https://en.wikipedia.org/wiki/2016

