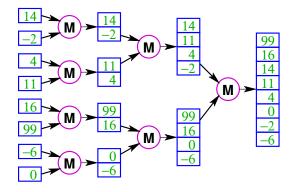
Bitonic Sort

Mark Greenstreet

CpSc 418 – Apr. 1, 2016

- Merging
- Shuffle and Unshuffle
- The Bitonic Sort Algorithm
- Summary

Parallelizing Mergesort



- We looked at this in the Mar. 30 lecture.
- The challenge is the merge step:
 - Can we make a parallel merge?

Merging and the 0-1 Principle

The main idea:

- Use divide-and-conquer.
 - ► Given two arrays, *A*₁ and *A*₂, divide them into smaller arrays that we can merge, and then easily combine the results.
 - What critereon should we use for dividing the arrays?
- Observation:
 - It's easy to merge two arrays of the same size, if they both have the same number of 1s.
 - If they have nearly the same number of 1s, that's easy as well.

Dividing the problem

- For simplicity, assume each array has an even number of elements.
 - As we go on, we'll assume that each array has an power-of-two number of elements.
 - That's the easiest way to explain bitonic sort.
 - Note: the algorithm works for arbitrary array sizes.
 - ★ See the lecture slides from 2013.
- Divide each array in the middle?
- Taking every other element?
- Other schemes?

Bitonic Sequences

- A sequence is **bitonic** if it consists of a monontonically increasing sequence followed by a monotonicially decreasing sequence.
 - Either of those sub-sequences can be empty.
 - We'll also consider a monotonically decreasing followed by monotonically increasing sequence to be bitonic.
- Properties of bitonic sequence
 - Any subsequence of a bitonic sequence is bitonic.
 - Let X be a bitonic sequence consisting of 0s and 1s. Let X₀ be the subsequence of the even-indexed elements of X, and let X₁ be odd-indexed subsequence.
 - ► The number of 0s in X₀ and X₁ differ by at most 1. Likewise for the number of 1s.

Bitonic Merge – big picture

• Given two sorted sequences, X_0 and X_1 , note that

$$Y = X_0 + reverse(X_1)$$

is bitonic.

- Divide Y into Y_0 and Y_1 , the even-indexed and odd-indexed subsequences.
 - Y_0 and Y_1 are both bitonic.
 - The number of 0s in Y_0 and Y_1 differ by at most 1. Likewise for 1s.
- Use bitonic merge (recursion) to sort Y₀ and Y₁ into ascending order to get Z₀ and Z₁.
 - The number of 0s in Z_0 and Z_1 differ by at most 1. Likewise for 1s.
- Shuffle Z_0 and Z_1 to get a list Z.
 - There can be at most one pair of out-of-order elements.
- Perform local compare-and-swap operations to get the sorted sequence, *W*.

Counting the 0s and 1s

The complexity of bitonic merge

Bitonic-Sort, and it's complexity

Shuffle and unshuffle

Shuffle is like what you can do with a deck of cards:

- Divide the deck in half
- Select cards alternately from the two halves.
- Shuffle is a circular-right-shift of the index bits.
 - Assuming the number of cards in the deck is a power of two.
- Unshuffle is the inverse of shuffle.
 - Unshuffling a deck of cards is dealing to two players.
 - Unshuffle is a circular-left-shift of the index bits.

Bitonic Merge and Unshuffle

The butterfly diagram – bitonic merge

The butterfly diagram – bitonic sort

Bitonic Sort in practice