CUDA: Matrix Multiplication

Mark Greenstreet

CpSc 418 - Mar. 23, 2016

- Makefiles, etc.
- The Brute Force Approach

Makefiles

```
# definitions
NVCC = nvcc
CFLAGS = -03
LDFLAGS =
OBJ = time_it.o
default: hw3
examples: examples.o $(OBJ)
        $(NVCC) $(CFLAGS) examples.o $(OBJ) $(LDFLAGS) -o examples
hw3: hw3.o $(OBJ)
        $(NVCC) $(CFLAGS) hw3.o $(OBJ) $(LDFLAGS) -o hw3
.SUFFIXES: .c .cu .o
.c.o:
       $(NVCC) -c $(CFLAGS) $<
.cu.o:
        $(NVCC) -c $(CFLAGS) $<
```

Extend the homework deadline?

What do you think?

Brute-force matrix multiplication

```
Brute-force, data-parallel: one thread per element of the result.
 matrixMult: compute c = a*b
  For simplicity, assume all matrices are n \times n.
__qlobal__ matrixMult(float *a, float *b, float *c, int n) {
   float *a_row = a + (blockDim.y*blockIdx.y + threadIdx.y)*n;
   float *b_col = b + (blockDim.x*blockIdx.x + threadIdx.x);
   float sum = 0.0:
   for (int k = 0; k < n; k++) {
      sum += a_row[k] * b_col[n*k];
   c[ (blockDim.y*blockIdx.y + threadIdx.y)*n +
       (blockDim.x*blockIdx.x + threadIdx.x) ] = sum;
```

Launching the kernel:

```
int nblks = n/blk_size;
dim3 blks(nblks, nblks, 1);
dim3 thrds(blk_size, blk_size, 1);
matrixMult<<<blks,thrds>>>(a, b, c, n);
```

Brute-force performance

- Not very good.
- Each loop iteration performs
 - Two global memory reads.
 - One fused floating-point add.
 - Four or five integer operations.
- Global memory is slow
 - Long access times.
 - Bandwidth shared by all the SPs.
- This implementation has a low CGMA
 - CGMA = Compute to Global Memory Access ratio.

Tiling the computation

- Divide each matrix into $m \times m$ tiles.
 - ► For simplicity, we'll assume that *n* is a multiple of *m*.
- Each block computes a tile of the product matrix.
 - Computing a m × m tile involves computing n/m products of m × m tiles and summing up the results.

A Tiled Kernel (step 1)

```
#define TILE_WIDTH 16
__qlobal__ matrixMult(float *a, float *b, float *c, int n) {
   float *a_row = a + (blockDim.y*blockIdx.y + threadIdx.y) *n;
   float *b_col = b + (blockDim.x*blockIdx.x + threadIdx.x);
   float sum = 0.0:
   for (int k1 = 0; k1 < gridDim.x; k1++) { % each tile product
      for (int k2 = 0; k2 < blockDim.x; k2++) { % within each tile
         k = k1*blockDim.x + k2;
         sum += a_row[k] * b_col[n*k]);
   c[ (blockDim.y*blockIdx.y + threadIdx.y) *n +
      (blockDim.x*blockIdx.x + threadIdx.x) ] = sum;
```

Launching the kernel:

```
int nblks = n/TILE_WIDTH;
dim3 blks(nblks, nblks, 1);
dim3 thrds(TILE_WIDTH, TILE_WIDTH, 1);
matrixMult<<<blks,thrds>>>(a, b, c, n);
```

A Tiled Kernel (step 2)

```
__qlobal__ matrixMult(float *a, float *b, float *c, int n) {
   _shared_ a_tile[TILE_WIDTH][TILE_WIDTH];
   _shared_ b_tile[TILE_WIDTH][TILE_WIDTH+1];
   int br = blockIdx.y, bc = blockIdx.x;
   int tr = threadIdx.y, tc = threadIdx.x;
   float *a_row = a + (blockDim.v*br + tr)*n;
   float *b_col = b + (blockDim.x*bc + tc);
   float sum = 0.0:
   for (int k1 = 0; k1 < gridDim.x; k1++) { % each tile product
      a_tile[tr][tc] = a_row[TILE_WIDTH*k1 + tc];
      b_tile[tr][tc] = b_col[n*(TILE_WIDTH*k1 + tr)];
      __syncthreads();
      for (int k2 = 0; k2 < blockDim.x; k2++) { % within each tile
         sum += a_tile[tc][k2] * b_tile[k2][tc];
      _syncthreads();
   c[(blockDim.y*br + tr)*n + (blockDim.x*bc + tc)] = sum;
```

- Launching the kernel: same as on slide 7.
- See also, Kirk & Hwu, Fig. 6.11 (p. 110).

Coalesced Memory Addresses

- Note: I've written r for "row" and "c" for column instead of x and y when defining br, bc, tr, and tc.
- The memory accesses are coalesced!
 - Linearizing the thread indices:

```
linearIndex = blockDim.x*threadIdx.y + threadIdx.x
```

- Reading from a_row
 - * a_tile[tr][tc] = a_row[TILE_WIDTH*k1 + tc];
 - ★ Consecutive threads have consecutive indices for tc.
 - ★ The references are coalesced.
 - ★ Note: one warp has threads for two rows: not perfectly coalesced.
- ▶ Reading from b_col
 - ★ b_tile[tr][tc] = b_col[n*(TILE_WIDTH*k1 + tr)];
 - ★ Consecutive threads have consecutive indices for b_col pointers.
 - ★ The references are coalesced (same remark about not quite perfect).
- Writing to b
 - ★ Not a big deal. Why?
 - * Even so, the writes are coalesced.

Could we do better?

Sure.

- Prefetch: hide memory latency.
- Double-buffer the tiles: avoid a syncthreads.
- Use larger blocks: perfect coalescing.
- Do we have enough shared memory?
 - Current version stores 256 float in a_tile and 256 in b_tile for a total of 2K bytes.
 - ► To keep the SM fully occupied, we need 6 blocks per SM. That's 12K bytes.
 - With optimizations:
 - Double buffering uses 24K bytes of shared memory per SM.
 - $\star~32\times32$ blocks use 48K bytes of shared memory per SM.
 - ★ Doing both uses 96K bytes of shared memory per SM.
- We might be able to do both if we made each thread compute two elements of the result.
 - Need to write the code and make timing measurements before trying fancy optimizations.

Tiling is good for more than just matrix multiplication

- Other numerical applications:
 - LU-decomposition and other factoring algorithms.
 - Matrix transpose.
 - Finite-element methods.
 - Many, many more.
- A non-numerical example: revsort

```
% To sort N^2 values, arrange them as a N \times N array. repeat \log N times { sort even numbered rows left-to-right. sort odd numbered rows right to left. sort columns top-to-bottom. }
```

- ▶ We can get coalesced accesses for the rows, but not the columns.
- ► Cooperative loading can help here e.g. use a transpose.

Summary

- Brute-force matrix multiplication is limited by global memory bandwidth.
- Using tiles addresses this bottleneck:
 - Load tile into shared memory and use them many times.
 - ► Each tile element is used by multiple threads.
 - The threads cooperate to load the tiles.
 - This approach also provides memory coalescing.
- Other optimizations: prefetching, double-buffering, loop-unrolling.
 - First, identify the critical bottleneck.
 - Then, optimize.
- These ideas apply to many parallel programming problems:
 - When possible, divide the problem into blocks to keep the data local.
 - Examples include matrix and mesh algorithms.
 - ► The same approach can be applied to non-numerical problems as well.

Preview

The rest of the term:

- Parallel sorting
 - Sorting networks and the 0-1 principle.
 - Application to parallel sorting: bitonic sort.
- Other stuff
 - map-reduce and hadoop.
 - That's probably all the time we'll have.