CUDA: Matrix Multiplication

Mark Greenstreet

CpSc 418 — Mar. 23, 2016

@ Makefiles, etc.
@ The Brute Force Approach

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 23, 2016 1/13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016

Makefiles

definitions

NVCC = nvcc
CFLAGS = -03
LDFLAGS =

OBJ = time_it.o

default: hw3

examples: examples.o $(0OBJ)
$(NVCC) $(CFLAGS) examples.o $(OBJ) $(LDFLAGS) -o examples

hw3: hw3.o0 $(OBRJ)
$(NVCC) $(CFLAGS) hw3.o $(OBJ) $(LDFLAGS) -o hw3

.SUFFIXES: .c .cu .o
.c.o:

$(NVCC) -c $(CFLAGS) $<
.cu.o:

$(NVCC) -c $(CFLAGS) $<

Mark Greenstreet CUDA: Matrix Multiplication

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016

Extend the homework deadline?

What do you think?

Mark Greenstreet CUDA: Matrix Multiplication

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016

Brute-force matrix multiplication

% Brute-force, data-parallel: one thread per element of the result.

% matrixMult: compute ¢ = a*b

% For simplicity, assume all matrices are n x n.

_global__ matrixMult (float =*a, float xb, float x*c, int n) {
float xa.row = a + (blockDim.y*blockIdx.y + threadIdx.y

)
float *b_col = b + (blockDim.x*xblockIdx.x + threadIdx.x);
float sum = 0.0;

for(int k = 0; k < n; k++) {
sum += a.rowlk] * b_col[n=*k];
}

c[(blockDim.y*blockIdx.y + threadIdx.y)#*n +
(blockDim.x*blockIdx.x + threadIdx.x)] = sum;

}
Launching the kernel:

int nblks = n/blk_size;

dim3 blks(nblks, nblks, 1);

dim3 thrds (blk_size, blk_size, 1);
matrixMult<<<blks,thrds>>>(a, b, c, n);

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 23, 2016

*N;

4/13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016

Brute-force performance

@ Not very good.
@ Each loop iteration performs

» Two global memory reads.
» One fused floating-point add.
» Four or five integer operations.

@ Global memory is slow

» Long access times.
» Bandwidth shared by all the SPs.

@ This implementation has a low CGMA
» CGMA = Compute to Global Memory Access ratio.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 23, 2016 5/13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016

Tiling the computation

@ Divide each matrix into m x m tiles.
» For simplicity, we’ll assume that n is a multiple of m.
@ Each block computes a tile of the product matrix.

» Computing a m x m tile involves computing n/m products of m x m
tiles and summing up the results.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 23, 2016 6/13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016

A Tiled Kernel (step 1)

#define TILE_WIDTH 16
_global__ matrixMult (float =xa, float xb, float =xc, int n) {
float *xa.row = a + (blockDim.y*blockIdx.y + threadIdx.y)
float *b_col =D (blockDim.x*blockIdx.x + threadIdx.x)
float sum = 0.0;
for(int k1 = 0; k1l < gridDim.x; kl++) { % eachtile product
for (int k2 0; k2 < blockDim.x; k2++) { % within each tile
k = klsblockDim.x + k2;
sum += a.rowl[k] % b_col[nx*k]);

*1’];

r

|~

}

}

c[(blockDim.yxblockIdx.y + threadIdx.y)#*n +
(blockDim.x*blockIdx.x + threadIdx.x)] = sum;

}
Launching the kernel:

int nblks = n/TILEWIDTH;

dim3 blks (nblks, nblks, 1);

dim3 thrds (TILE.WIDTH, TILEWIDTH, 1);
matrixMult<<<blks,thrds>>>(a, b, c, n);

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 23, 2016

7/13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016

A Tiled Kernel (step 2)

_global__ matrixMult (float =*a, float b, float *c, int n) {
_shared__ a_tile[TILEWIDTH] [TILE_WIDTH];
_shared__ b_tile[TILEWIDTH] [TILE.WIDTH+1];
int br = blockIdx.y, bc = blockIdx.x;
int tr = threadIdx.y, tc = threadIdx.x;
float xa.row = a + (blockDim.yxbr + tr)x*n;
float *b_col = b + (blockDim.xxbc + tc);
float sum = 0.0;
for(int k1l = 0; k1 < gridDim.x; kl++) { % each tile product
a-tile[tr][tc] = a.row[TILEWIDTHxkl + tc];
b_tile[tr] [tc] = b_col[n* (TILEWIDTH*k1l + tr)];
__syncthreads () ;
for (int k2 = 0; k2 < blockDim.x; k2++) { % within each tile
sum += a_tile[tc] [k2] * b_tile[k2] [tc];
}

__syncthreads () ;

}

c[(blockDim.yxbr + tr)xn + (blockDim.xxbc + tc)] = sum;

@ Launching the kernel: same as on slide 7.
@ See also, Kirk & Hwu, Fig. 6.11 (p. 110).

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 23, 2016 8/13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016

Coalesced Memory Addresses

@ Note: I've written r for “row” and “c” for column instead of x and y
when defining br, bc, tr, and tc.

@ The memory accesses are coalesced!
» Linearizing the thread indices:
linearIndex = blockDim.x*threadIdx.y + threadIdx.x
» Reading from a_row
* a_tile[tr][tc] = a_.row[TILEWIDTH*xkl + tc];
* Consecutive threads have consecutive indices for tc.
* The references are coalesced.
* Note: one warp has threads for two rows: not perfectly coalesced.
» Reading fromb_col
* b_tile[tr][tc] = b_col[n* (TILEWIDTH+xkl + tr)];
* Consecutive threads have consecutive indices for b_col pointers.
* The references are coalesced (same remark about not quite perfect).
» Writing to b
* Not a big deal. Why?
* Even so, the writes are coalesced.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 23, 2016 9/13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016

Could we do better?
Sure.
@ Prefetch: hide memory latency.
@ Double-buffer the tiles: avoid a syncthreads.

@ Use larger blocks: perfect coalescing.
@ Do we have enough shared memory?
» Current version stores 256 floatin a_ tile and 256 inb_tile for a
total of 2K bytes.
» To keep the SM fully occupied, we need 6 blocks per SM. That's
12K bytes.
» With optimizations:
* Double buffering uses 24K bytes of shared memory per SM.
* 32 x 32 blocks use 48K bytes of shared memory per SM.
* Doing both uses 96K bytes of shared memory per SM.
@ We might be able to do both if we made each thread compute two
elements of the result.
» Need to write the code and make timing measurements before
trying fancy optimizations.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 23, 2016 10/13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016

Tiling is good for more than just matrix multiplication

@ Other numerical applications:
» LU-decomposition and other factoring algorithms.
» Matrix transpose.
» Finite-element methods.
» Many, many more.
@ A non-numerical example: revsort
% To sort N? values, arrange them as a N x N array.
repeat logN times {
sort even numbered rows left-to-right.

sort odd numbered rows right to left.
sort columns top-to-bottom.

}

» We can get coalesced accesses for the rows, but not the columns.
» Cooperative loading can help here — e.g. use a transpose.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 23, 2016 11/13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016

Summary

@ Brute-force matrix multiplication is limited by global memory
bandwidth.

@ Using tiles addresses this bottleneck:
» Load tile into shared memory and use them many times.
» Each tile element is used by multiple threads.
» The threads cooperate to load the tiles.
» This approach also provides memory coalescing.

@ Other optimizations: prefetching, double-buffering, loop-unrolling.
» First, identify the critical bottleneck.
» Then, optimize.

@ These ideas apply to many parallel programming problems:

» When possible, divide the problem into blocks to keep the data
local.

» Examples include matrix and mesh algorithms.

» The same approach can be applied to non-numerical problems as
well.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 23, 2016 12/13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016

Preview

The rest of the term:
@ Parallel sorting

» Sorting networks and the 0-1 principle.
» Application to parallel sorting: bitonic sort.

@ Other stuff

» map-reduce and hadoop.
» That’s probably all the time we’ll have.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 — Mar. 23, 2016 13/13

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_23
https://en.wikipedia.org/wiki/2016

