
CUDA: Matrix Multiplication

Mark Greenstreet

CpSc 421 – Mar. 18, 2016

Remarks about the Homework
The Brute Force Approach

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 21, 2016 1 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs421
https://en.wikipedia.org/wiki/March_21
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_21
https://en.wikipedia.org/wiki/2016

Remarks about the homework

Yes, you are allowed to base your solutions on code I have
presented in class.

I Of course, you must add a comment saying that’s what you did.
I Include a summary of the changes you made and why.

For each problem, focus on the aspect it is trying to measure.
I E.g. Q1 is for measuring FLOPS – anything else is irrelevant.
I E.g. Q2 is for measuring memory bandwidth

F Observe that there is only one floating point operation, a fused
multiply-add, per memory read.

F With > 100 SPs, is should be “easy” to make the memory reads the
main bottleneck.

F You can delegate the final sums (over blocks, and even over threads)
to the CPU.

F For timing, just measure the GPU part – that’s where the memory
reads are happening.

I E.g. Q3 measures calls to the random number generator library.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 21, 2016 2 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_21
https://en.wikipedia.org/wiki/2016

Brute-force matrix multiplication

% Brute-force, data-parallel: one thread per element of the result.
% matrixMult: compute c = a*b
% For simplicity, assume all matrices are n × n.
global matrixMult(float *a, float *b, float *c, int n) {
float *a row = a + (blockDim.y*blockIdx.y + threadIdx.y)*n;
float *b col = b + (blockDim.x*blockIdx.x + threadIdx.x);
int myY = blockDim.y*blockIdx.y + threadIdx.y;
float sum = 0.0;
for(int k = 0; k < n; i++) {
sum += (*a row) * (*b col);
a row = a row+1;
b col = a col+n;
}
c[(blockDim.y*blockIdx.y + threadIdx.y)*n +

(blockDim.x*blockIdx.x + threadIdx.x)] = sum;
}

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 21, 2016 3 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_21
https://en.wikipedia.org/wiki/2016

Brute-force performance

Not very good.
Each loop iteration performs

I Two global memory reads.
I One fused floating-point add.
I Four or five integer operations.

Global memory is slow
I Long access times.
I Bandwidth shared by all the SPs.

This implementation has a low CGMA
I CGMA = Compute to Global Memory Access ratio.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 21, 2016 4 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_21
https://en.wikipedia.org/wiki/2016

Tiling the computation

Divide eacn matrix into m × m tiles.
I For simplicity, we’ll assume that n is a multiple of m.

Each block computes a tile of the product matrix.
I Computing a m × m tile involves computing n/m products of m × m

tiles and summing up the results.

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 21, 2016 5 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_21
https://en.wikipedia.org/wiki/2016

A Tiled Kernel

Based on Fig. 6.11 in the text.

#define TILE WIDTH 16 global matrixMult(float *a, float *b, float *c, int n) {
shared float sh a[TILE WIDTH][TILE WIDTH];
shared float sh b[TILE WIDTH][TILE WIDTH];

int n tiles = n / TILE WIDTH; float sum = 0.0;
for(int kk = 0; kk < n tiles; kk++) { % each tile produce

% load tiles
syncthreads();

% compute product
}
c[(blockDim.y*blockIdx.y + threadIdx.y)*n +

(blockDim.x*blockIdx.x + threadIdx.x)] = sum;
}

Mark Greenstreet CUDA: Matrix Multiplication CS 418 – Mar. 21, 2016 6 / ??

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_21
https://en.wikipedia.org/wiki/2016

