CUDA: Performance Considerations

Mark Greenstreet

CpSc 418 – Mar. 18, 2016

- Floating Point Foibles
- Shared Memory Accesses
- Global Memory Accesses
- Occupancy
- Instruction Mix

Remarks about floating point

When working on my solution to <u>HW3</u>, Q1,

I first wrote:

```
x = alpha * x * (1.0 - x);
```

- and the performance was disappointing.
- After many frustrating attempts to track down the problem, I added one, little f:

x = alpha * x * (1.0f - x);

- and my code ran $5.5 \times x$ faster.
- What happened?

Floats, doubles, and GPUs

- GPUs are optimized for single-precision floating point arithmetic.
- For the GeForce GTX 550 Ti, double precision arithmetic is way slower than single precision.
- In C, 1.0 is a **double precision** constant, and 1.0f is single precision.
- When I wrote x = alpha*x*(1.0-x), the compiler generate code that:
 - computes the product alpha*x.
 - ★ both operands are single precision.
 - the computation is done using single precision arithmetic.
 - computes the difference 1.0-x
 - ★ 1.0 is double precision, x is single precision.
 - the computation is done using double precision arithmetic
 - ★ and the result is double precision.
 - computes the product alpha*x*(1.0-x).
 - * the computation is done using double precision arithmetic
 - ★ and the result is double precision.
- When I wrote x = alpha*x*(1.0f-x), everything stays in single-precision, and it's much faster.

Fused multiply adds

- Calculating ax + b is very common
 - Example: dot product.
- The multiplier hardware is just a pipeline of adders.
 - When multiplying a*x, the hardware can start the pipeline from b instead of from 0.
 - We get the sum for "free".
 - This is called a **fused** multiply-add.
- The marketing people like to count the fused multiply-add as two floating point operations.
 - This helps make some performance claims make sense.
- For the obsessive compulsive:
 - Rounding with a fused-multiply add can be slightly different than when doing two, separate operations.
 - Compilers usually let the users specify "strict" floating point (no fusing) or "fast" floating point (with fusing).
 - nvcc uses fused multiply add unless you give it an option not to.
 - Note: this doesn't affect the problems for HW3.

Shared Memory

See the March 16 lecture.

- Shared memory is fast, on-chip memory.
- Shared memory is much faster than global memory.
 - Global memory: coalescing references
 - Other memories on the GPU
- An example, and lessons learned
 - The example: shared-memory bank conflicts
 - Lessons learned

Global memory: coalescing references

- GPUs have relatively high off-chip memory bandwidth
 - compared with CPUs
 - still much slower than accessing registers or shared-memory with good intereaving.
- If all the warps in a thread access consecutive locations in the same load, the GPU can maximize the memory much faster than with random accesses.
- I tried modifying the code from examples.cu (March 16).
 - global memory is definitely slower than registers or shared memory.
 - coalesced accesses to global memory are faster than worst-case bank collisions with the shared memory.
 - I need to do more experiments to understand the effects of the on chip caches.

SMs and Thread Occupancy

Occupancy: how many warps are available for the SM

- Why we care: the SP pipelines have long latencies.
- The CUDA approach is to run lots of threads simultaneously to keep the pipelines busy.
- Limits to occupancy
 - How many blocks per SM.
 - How much shared-memory per block.
 - How many threads per block.
 - How many registers per thread.
- Figuring it out
 - nvcc -03 -c --ptxas-options -v examples.cu
 - The nVidia occupancy calculator: CUDA_Occupancy_calculator.xls
 - But we can do it manually?

Occupancy with CUDA 2.1

• Different GPUs at level CUDA 2.1 have differing numbers of SMs.

- But the SMs all look the same.
- Even for different GPUs.
- CUDA 2.1 SMs
 - An SM has warps of 32 threads
 - An SM can simultaneously execute up to 1536 threads (48 warps).
 - An SM has 32K (2¹5) 32-bit registers (128K/bytes, 1K registers/thread).
 - An SM has 48K bytes of shared memory.
 - An SM can simultaneously execute up to 8 blocks.
 - Each block can have up to 1024 threads.

Why all these numbers?

- When designing a new generation of GPUs
 - The GPU architects run lots of simulations to estimate the performance for various choices of the architectural parameters.
 - For example, if more warms are allowed in the scheduling pool
 - ★ The SM will have useful instructions to dispatch more often \Rightarrow better performance.
 - **BUT** the on-chip circuitry to hold and manage the scheduling pool will be larger.

 - ★ Instruction scheduling will use more power ⇒ a longer clock period, or fewer SMs, or more expensive chip cooling.
 - The real-estate on the chip could have been used for something else. Is this the **best** use of that area.
 - Architects explore these trade-offs to optimize performance for graphics applications, the main source of revenue.
 - Architects are also risk-adverse: make the chip as much like the last one that worked as you can.
- Does it matter?
 - Wnen writing low-level code, e.g. C CUDA, you see all of these choices

Mark Greenstreet

SMs, blocks, and threads

- A SM can have simultaneously execute most 8 blocks.
- All blocks have the same number of threads.
- Thus, a SM can execute at most

$$\min\left(8, \left\lfloor\frac{1536}{\textit{threadsPerBlock}}\right\rfloor\right)$$

blocks.

• The ratio of the number of threads executing to the maximum possible is called the "thread occupancy":

$$hreadOccupancy \leq \min\left(8, \left\lfloor rac{1536}{threadsPerBlock}
ight
brace
ight) rac{threadsPerBlock}{1536}$$

SMs, blocks, and threads - the plot

- I get 100% occupancy when *threadsPerBlock* ∈ {*192*, *384*, *768*}, but the CUDA calculator doesn't.
 - I'll have to try some experiments stay tuned.
- This assumes the grid had enough blocks to keep the SMs busy.
 - A grid with a single block will have poor performance.

SMs, threads, and registers

- Each SM has 32K registers that's 1K registers per SP.
- This is another constraint:

nblks ≤ frac1024registersPerThread

- An SM can run 48 warps simultaneously
 - But only if each warp uses at most 21 registers.

Hitting the register constraint

What if each thread uses 22 registers?

• $22 * 48 = 1056 > 1024 \rightarrow \text{ can't run } 48 \text{ warps.}$

•
$$\left\lfloor \frac{1024}{22} \right\rfloor = \left\lfloor 46.\overline{54} \right\rfloor = 46.$$

- Can we run 46 warps?
 - One block with 46 warps would have 46 * 32 = 1472 > 1024 threads. Not allowed.
 - Two block with 23 warps each would each ahve 736 threads. That should work.
 - But, the plot with the occupancy calculator only shows warp counts that are multiples of 8.
 - Have I overlooked another architectural constraint?

★ probably

- Let's assume that with 23 registers per thread, the SM can run at most 40 warps simultaneously.
 - Then either each thread must have enough instruction-level parallelism to keep the SPs busy.
 - Or, we'll see a drop in performance.

How many registers does my thread use?

use the --ptxas-options -v option for nvcc nvcc--ptxas-options -v -03 -c examples.cu ptxas info : 0 bytes gmem ptxas info : Compiling entry function '_Z8sh_mem_2jiiPj' f ptxas info : Function properties for _Z8sh_mem_2jiiPj 0 bytes stak frame, 0 bytes spill stores, 0 bytes spill ptxas info : Used 17 registers, 4096 bytes smem, 56 bytes ptxas info : Compiling entry function '_Z8sh_mem_1jiiPj' f ptxas info : Compiling entry function '_Z8sh_mem_1jiiPj' f ptxas info : Function properties for _Z8sh_mem_1jiiPj' f ptxas info : Function properties for _Z8sh_mem_1jiiPj 0 bytes stak frame, 0 bytes spill stores, 0 bytes spill ptxas info : Used 14 registers, 4096 bytes smem, 56 bytes

Translation:

- kernel sh_mem_2 uses 17 registers per thread.
- kernel sh_mem_1 uses 14 registers per thread.
- both kernels use 4024 bytes of shared memory per block.
- neither kernel spills registers to global memory (good).

Instruction Mix

- We measure our program performance in terms of the critical, unavoidable operations
 - Typically "floating point operations" for matrix-multiplication or other scientific computing applications.
 - Often main memory accesses for sorting, or other data-intensive applications.
- But, the program does other operations as well
 - This is where you see me counting instructions on my fingers during lecture.
 - Optimizing performance can involve minimizing this overhead:
 - ★ Good algorithm design.
 - ★ Memory access optimization.
 - ★ Loop unrolling

Loop Limitations

Initial code:

```
__global__myKernel(...) {
    do something
```

• Unless *do something* is big, kernel launch takes most of the time. So, make each thread do many somethings.

```
__global__myKernel(int m, ...) {
  for(int i = 0; i < m; i++)
     do something</pre>
```

- Two, typical performance limits if *do something* is simple.
 - It takes two or three instructions per loop iteration to manage the loop:
 - ★ One to update the loop index
 - * One or two to check the loop bounds and branch.
 - * If *do something* is only three or four instructions, then 40-50% of the execution time is for loop management.
 - If each iteration of do something depends on the previous one
 - Then the long latency of the SP pipelines can limit performance.
 - * Even if we have 48 warps running.

Loop Unrolling

Have each loop iteration perform multiple copies of the loop body

```
__global__myKernel(int m, ...) {
  for(int i = 0; i < m; i += 4) {
    do something 1
    do something 2
    do something 3
    do something 4
  }
}</pre>
```

- More "real work" for each time the loop management code is executed.
- Need to make sure that m is a multiple of four, or handle end-cases separately.
- Often, we need more registers.

Unrolling – the plots

