
CUDA: Performance Considerations

Mark Greenstreet

CpSc 418 – Mar. 18, 2016

Floating Point Foibles
Shared Memory Accesses
Global Memory Accesses
Occupancy
Instruction Mix

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 1 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


Remarks about floating point

When working on my solution to HW3, Q1,
I I first wrote:

x = alpha*x*(1.0 - x);

I and the performance was disappointing.
I After many frustrating attempts to track down the problem, I added

one, little f:
x = alpha*x*(1.0f - x);

I and my code ran 5.5× x faster.

What happened?

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 2 / 18

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/hw/3/hw3.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


Floats, doubles, and GPUs
GPUs are optimized for single-precision floating point arithmetic.
For the GeForce GTX 550 Ti, double precision arithmetic is way
slower than single precision.
In C, 1.0 is a double precision constant, and 1.0f is single
precision.
When I wrote x = alpha*x*(1.0-x), the compiler generate
code that:

I computes the product alpha*x.
F both operands are single precision.
F the computation is done using single precision arithmetic.

I computes the difference 1.0-x
F 1.0 is double precision, x is single precision.
F the computation is done using double precision arithmetic
F and the result is double precision.

I computes the product alpha*x*(1.0-x).
F the computation is done using double precision arithmetic
F and the result is double precision.

When I wrote x = alpha*x*(1.0f-x), everything stays in
single-precision, and it’s much faster.
Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 3 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


Fused multiply adds
Calculating ax + b is very common

I Example: dot product.
The multiplier hardware is just a pipeline of adders.

I When multiplying a*x, the hardware can start the pipeline from b
instead of from 0.

I We get the sum for “free”.
I This is called a fused multiply-add.

The marketing people like to count the fused multiply-add as two
floating point operations.

I This helps make some performance claims make sense.
For the obsessive compulsive:

I Rounding with a fused-multiply add can be slightly different than
when doing two, separate operations.

I Compilers usually let the users specify “strict” floating point (no
fusing) or “fast” floating point (with fusing).

I nvcc uses fused multiply add unless you give it an option not to.
I Note: this doesn’t affect the problems for HW3.

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 4 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


Shared Memory

See the March 16 lecture.
Shared memory is fast, on-chip memory.
Shared memory is much faster than global memory.

I Global memory: coalescing references
I Other memories on the GPU

An example, and lessons learned
I The example: shared-memory bank conflicts
I Lessons learned

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 5 / 18

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/03-16/slides.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


Global memory: coalescing references

GPUs have relatively high off-chip memory bandwidth
I compared with CPUs
I still much slower than accessing registers or shared-memory with

good intereaving.

If all the warps in a thread access consecutive locations in the
same load, the GPU can maximize the memory much faster than
with random accesses.
I tried modifying the code from examples.cu (March 16).

I global memory is definitely slower than registers or shared memory.
I coalesced accesses to global memory are faster than worst-case

bank collisions with the shared memory.
I I need to do more experiments to understand the effects of the on

chip caches.

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 6 / 18

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/03-16/examples.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


SMs and Thread Occupancy

Occupancy: how many warps are available for the SM
I Why we care: the SP pipelines have long latencies.
I The CUDA approach is to run lots of threads simultaneously to

keep the pipelines busy.
Limits to occupancy

I How many blocks per SM.
I How much shared-memory per block.
I How many threads per block.
I How many registers per thread.

Figuring it out
I nvcc -O3 -c --ptxas-options -v examples.cu
I The nVidia occupancy calculator: CUDA Occupancy calculator.xls
I But we can do it manually?

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 7 / 18

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


Occupancy with CUDA 2.1

Different GPUs at level CUDA 2.1 have differing numbers of SMs.
I But the SMs all look the same.
I Even for different GPUs.

CUDA 2.1 SMs
I An SM has warps of 32 threads
I An SM can simultaneously execute up to 1536 threads (48 warps).
I An SM has 32K (215) 32-bit registers (128K/bytes, 1K

registers/thread).
I An SM has 48K bytes of shared memory.
I An SM can simultaneously execute up to 8 blocks.
I Each block can have up to 1024 threads.

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 8 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


Why all these numbers?
When designing a new generation of GPUs

I The GPU architects run lots of simulations to estimate the
performance for various choices of the architectural parameters.

I For example, if more warms are allowed in the scheduling pool
F The SM will have useful instructions to dispatch more often ⇒ better

performance.
F BUT the on-chip circuitry to hold and manage the scheduling pool will

be larger.
F This means instruction scheduling will be slower ⇒ a longer clock

period.
F Instruction scheduling will use more power ⇒ a longer clock period,

or fewer SMs, or more expensive chip cooling.
F The real-estate on the chip could have been used for something else.

Is this the best use of that area.
I Architects explore these trade-offs to optimize performance for

graphics applications, the main source of revenue.
I Architects are also risk-adverse: make the chip as much like the

last one that worked as you can.
Does it matter?

I Wnen writing low-level code, e.g. C CUDA, you see all of these
choices.

I When using a higher-level library, you encounte the constraints of
the low-level code.

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 9 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


SMs, blocks, and threads

A SM can have simultaneously execute most 8 blocks.
All blocks have the same number of threads.
Thus, a SM can execute at most

min
(

8,
⌊

1536
threadsPerBlock

⌋)
blocks.
The ratio of the number of threads executing to the maximum
possible is called the “thread occupancy”:

threadOccupancy ≤

min
(

8,
⌊

1536
threadsPerBlock

⌋)
threadsPerBlock

1536

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 10 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


SMs, blocks, and threads – the plot

threads per block
0 200 400 600 800 1000 1200

%
 O

cc
up

an
cy

10

20

30

40

50

60

70

80

90

100
occupancy vs. threads per block

I get 100% occupancy when threadsPerBlock ∈ {192,384,768},
but the CUDA calculator doesn’t.

I I’ll have to try some experiments – stay tuned.
This assumes the grid had enough blocks to keep the SMs busy.

I A grid with a single block will have poor performance.

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 11 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


SMs, threads, and registers

Each SM has 32K registers – that’s 1K registers per SP.
This is another constraint:

nblks ≤ frac1024registersPerThread

An SM can run 48 warps simultaneously
I But only if each warp uses at most 21 registers.

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 12 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


Hitting the register constraint
What if each thread uses 22 registers?

22 ∗ 48 = 1056 > 1024 → can’t run 48 warps.⌊1024
22

⌋
= b46.54c = 46.

Can we run 46 warps?
I One block with 46 warps would have 46 ∗ 32 = 1472 > 1024

threads. Not allowed.
I Two block with 23 warps each would each ahve 736 threads. That

should work.
I But, the plot with the occupancy calculator only shows warp counts

that are multiples of 8.
I Have I overlooked another architectural constraint?

F probably

Let’s assume that with 23 registers per thread, the SM can run at
most 40 warps simultaneously.

I Then either each thread must have enough instruction-level
parallelism to keep the SPs busy.

I Or, we’ll see a drop in performance.

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 13 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


How many registers does my thread use?

use the --ptxas-options -v option for nvcc
nvcc--ptxas-options -v -O3 -c examples.cu
ptxas info : 0 bytes gmem
ptxas info : Compiling entry function ’ Z8sh mem 2jiiPj’ for ’sm 20’
ptxas info : Function properties for Z8sh mem 2jiiPj

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 17 registers, 4096 bytes smem, 56 bytes cmem[0]
ptxas info : Compiling entry function ’ Z8sh mem 1jiiPj’ for ’sm 20’
ptxas info : Function properties for Z8sh mem 1jiiPj

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 14 registers, 4096 bytes smem, 56 bytes cmem[0]

Translation:
I kernel sh mem 2 uses 17 registers per thread.
I kernel sh mem 1 uses 14 registers per thread.
I both kernels use 4024 bytes of shared memory per block.
I neither kernel spills registers to global memory (good).

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 14 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


Instruction Mix

We measure our program performance in terms of the critical,
unavoidable operations

I Typically “floating point operations” for matrix-multiplication or other
scientific computing applications.

I Often main memory accesses for sorting, or other data-intensive
applications.

But, the program does other operations as well
I This is where you see me counting instructions on my fingers

during lecture.
I Optimizing performance can involve minimizing this overhead:

F Good algorithm design.
F Memory access optimization.
F Loop unrolling

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 15 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


Loop Limitations
Initial code:

global myKernel(. . .) {
do something

}
Unless do something is big, kernel launch takes most of the time.
So, make each thread do many somethings.

global myKernel(int m, . . .) {
for(int i = 0; i < m; i++)

do something
}

Two, typical performance limits if do something is simple.
I It takes two or three instructions per loop iteration to manage the

loop:
F One to update the loop index
F One or two to check the loop bounds and branch.
F If do something is only three or four instructions, then 40-50% of the

execution time is for loop management.
I If each iteration of do something depends on the previous one

F Then the long latency of the SP pipelines can limit performance.
F Even if we have 48 warps running.

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 16 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


Loop Unrolling

Have each loop iteration perform multiple copies of the loop body
global myKernel(int m, . . .) {
for(int i = 0; i < m; i += 4) {

do something 1
do something 2
do something 3
do something 4

}
}

More “real work” for each time the loop management code is
executed.
Need to make sure that m is a multiple of four, or handle
end-cases separately.
Often, we need more registers.

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 17 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016


Unrolling – the plots

unrolling
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

ex
ec

ut
io

n 
tim

e 
(n

or
m

al
iz

ed
)

1

1.5

2

2.5

3

3.5

4
execution time vs. unrolling depth

unrolling
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

FL
O

PS
 (n

or
m

al
iz

ed
)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
FLOPS vs. unrolling depth

Mark Greenstreet CUDA: Performance Considerations CS 418 – Mar. 18, 2016 18 / 18

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_18
https://en.wikipedia.org/wiki/2016

