
CUDA: Memory

Mark Greenstreet

CpSc 418 – Mar. 16, 2016

GPU Memory Hierarchy: In Practice

Mark Greenstreet CUDA: Memory CS 418 – Mar. 16, 2016 1 / 7

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_16
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_16
https://en.wikipedia.org/wiki/2016


GPU Memory Hierarchy

A few topics about the memory hierarchy, left over from March 16.
I Global memory: coalescing references
I Other memories on the GPU

An example, and lessons learned
I The example: shared-memory bank conflicts
I Lessons learned

Mark Greenstreet CUDA: Memory CS 418 – Mar. 16, 2016 2 / 7

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/03-14/slides.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_16
https://en.wikipedia.org/wiki/2016


Global memory: coalescing references

Mark Greenstreet CUDA: Memory CS 418 – Mar. 16, 2016 3 / 7

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_16
https://en.wikipedia.org/wiki/2016


Other Memory

Constant memory: cached, read-only access of global memory.
Texture memory: global memory with special access operations.
L1 and L2 caches: only for memory reads?
We won’t cover these any further in class

I Nor are you expected to use them.
I But you’re welcome to try them if you want.

Mark Greenstreet CUDA: Memory CS 418 – Mar. 16, 2016 4 / 7

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_16
https://en.wikipedia.org/wiki/2016


Shared Memory: Bank Conflicts

The code is at .

Mark Greenstreet CUDA: Memory CS 418 – Mar. 16, 2016 5 / 7

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/03-16/examples.cu
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_16
https://en.wikipedia.org/wiki/2016


What I learned

The scope of shared variables.
Keeping the SMs busy.
A few notes about floating point.

Mark Greenstreet CUDA: Memory CS 418 – Mar. 16, 2016 6 / 7

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_16
https://en.wikipedia.org/wiki/2016


The scope of shared variables

A shared variable is visible by all threads in the same block.
That means there’s a different instance of the shared variable for
each block.
This puts a limit on the number of blocks that can run on a SM.

I With CUDA 2.1, each SM has 48K bytes of shared memory.
I If a block needs 12K bytes of shared memory, then at most 4 blocks

can execute on the SM at the same time.
I Note that a SM has 32K, 4-byte registers – the register storage is

more than 2.5× the shared memory capacity.

Mark Greenstreet CUDA: Memory CS 418 – Mar. 16, 2016 7 / 7

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_16
https://en.wikipedia.org/wiki/2016


Keeping SMs busy

Occupancy
Limits to occupancy

I How many blocks per SM.
I How much shared-memory per block.
I How many threads per block.
I How many registers per thread.

Figuring it out
I nvcc -O3 -c --ptxas-options -v examples.cu
I The nVidia occupancy calculator (link to be added)

Mark Greenstreet CUDA: Memory CS 418 – Mar. 16, 2016 8 / 7

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_16
https://en.wikipedia.org/wiki/2016


Remarks about floating point

Mark Greenstreet CUDA: Memory CS 418 – Mar. 16, 2016 9 / 7

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_16
https://en.wikipedia.org/wiki/2016

