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GPU Memory Hierarchy

A few topics about the memory hierarchy, left over from March 16.
I Global memory: coalescing references
I Other memories on the GPU

An example, and lessons learned
I The example: shared-memory bank conflicts
I Lessons learned
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Global memory: coalescing references
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Other Memory

Constant memory: cached, read-only access of global memory.
Texture memory: global memory with special access operations.
L1 and L2 caches: only for memory reads?
We won’t cover these any further in class

I Nor are you expected to use them.
I But you’re welcome to try them if you want.
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Shared Memory: Bank Conflicts

The code is at .
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What I learned

The scope of shared variables.
Keeping the SMs busy.
A few notes about floating point.
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The scope of shared variables

A shared variable is visible by all threads in the same block.
That means there’s a different instance of the shared variable for
each block.
This puts a limit on the number of blocks that can run on a SM.

I With CUDA 2.1, each SM has 48K bytes of shared memory.
I If a block needs 12K bytes of shared memory, then at most 4 blocks

can execute on the SM at the same time.
I Note that a SM has 32K, 4-byte registers – the register storage is

more than 2.5× the shared memory capacity.
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Keeping SMs busy

Occupancy
Limits to occupancy

I How many blocks per SM.
I How much shared-memory per block.
I How many threads per block.
I How many registers per thread.

Figuring it out
I nvcc -O3 -c --ptxas-options -v examples.cu
I The nVidia occupancy calculator (link to be added)
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Remarks about floating point
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