
CUDA: Synchronization and Scheduling

Mark Greenstreet

CpSc 418 – Mar. 9, 2016

Summary Grids, blocks, threads, and warps.
Synchronization
Examples

Mark Greenstreet CUDA: Synchronization and Scheduling CS 418 – Mar. 9, 2016 1 / 10

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_9
https://en.wikipedia.org/wiki/2016
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_9
https://en.wikipedia.org/wiki/2016


Grids, blocks, threads, and warps

An nVidia glossary

When a kernel is launched:
I The code running on the CPU calls a function that dispatches code

to execute on the GPU.
I Execution on the GPU is performed by an array of threads called a

grid.
A grid is organized as a 1D or 2D array of blocks.

I Blocks managed by software.
I Lots of blocks, more switching overhead.

Each block is a 1D, 2D, or 3D array of threads.
I Threads managed by hardware.
I Limited (only a thousand or so) threads.
I Essentially zero thread-switch cost.

Mark Greenstreet CUDA: Synchronization and Scheduling CS 418 – Mar. 9, 2016 2 / 10

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_9
https://en.wikipedia.org/wiki/2016


Reduce (from Mar. 7)

for(int stride = n/2; stride > 0; stride >>= 1) {
if(my idx < stride)

data[my idx] += data[my idx] + stride;
syncthreads();

}

Consider n == 1024.
In the first iteration, there are 16 active warps – all threads in each
warp are busy.
In the second iteration, there are 8 active warps – all threads in
each active warp are busy.
Similarly, for the 3rd through 5th iterations:

I The number of active warps decreases.
I All threads in each active warp are busy.

What does syncthreads() do?

Mark Greenstreet CUDA: Synchronization and Scheduling CS 418 – Mar. 9, 2016 3 / 10

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/03-07/slides.pdf
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_9
https://en.wikipedia.org/wiki/2016


Synchronization

The reduce example used syncthreads(): all the threads in
the block must execute this statement before any continue
beyond it.

I Be very careful about thread divergence.
I All threads in the block must meet at the barrier.
I They must all meet at the same barrier.

F Note about loops: that means the same iteration.

Mark Greenstreet CUDA: Synchronization and Scheduling CS 418 – Mar. 9, 2016 4 / 10

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_9
https://en.wikipedia.org/wiki/2016


Synchronization Across Blocks

Q: What if you need to synchronize more threads that fit in a
block?
A: Launch multiple kernels.

I Each kernel completion-followed-by-launch acts like a barrier.
I I need to measure the timings.

F Synchronization by kernel launch is certainly slower than
syncthreads()

F How much slower?

No syncthreds() needed if all the threads are in the same
warp.

I Again, I need to measure the timings.

Mark Greenstreet CUDA: Synchronization and Scheduling CS 418 – Mar. 9, 2016 5 / 10

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_9
https://en.wikipedia.org/wiki/2016


Instruction Scheduling

A GPU has multiple SMs (SM = streaming multiprocessor)
Each SM can be assigned multiple thread blocks.
The hardware treats each thread-block as groups of 32
consecutive threads called warps.

I For example, If a thread has threadIdx.x = 0, that means it is
thread 0 in warp 0. If a thread has threadIdx.x = 83, that means
it is thread 19 in warp 3.

The number of blocks and threads that can be running at any time
is determined by:

I The number of SMs.
I The number of blocks supported per SM.
I The number of threads supported per block.
I The number of registers per SP, and the number needed by each

thread.
I And other constraints described in Chapter 6.

Mark Greenstreet CUDA: Synchronization and Scheduling CS 418 – Mar. 9, 2016 6 / 10

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_9
https://en.wikipedia.org/wiki/2016


Instruction Execution

Each SM tracks which warps of its blocks are ready to execute.
I Earlier GPUs used a scoreboard.
I More recent generations have the compiler handle this: instruction

latencies are fixed.
F What about cache misses?

On each clock-cycle, the SM chooses an instruction from a
runnable warp and issues it.

I Figure 4.10 (page 72 Kirk & Hwu) shows an SM with eight SPs, and
issuing an instruction would take 4 consecutive cycles.

I This makes sense: broadcasting the instruction to the SPs and
using it 4 times further amortizes the overhead of managing
instructions.

I Not shown is that some GPUs can execute two, independent
instructions per cycle – i.e. a floating point operation and a load or
store.

I These details are supposed to be largely invisible to the
programmer.

Mark Greenstreet CUDA: Synchronization and Scheduling CS 418 – Mar. 9, 2016 7 / 10

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_9
https://en.wikipedia.org/wiki/2016


Lots of Blocks

A kernel may consist of more blocks than can execute at the same
time on the GPU.
In this case, it runs as many blocks as it can.
When a block completes, the GPU then starts a new block to
replace it.
I believe that each block runs to completion before a new block
starts:

I I couldn’t find anything that suggested otherwise.

The order in which blocks are executed is unspecified.

Mark Greenstreet CUDA: Synchronization and Scheduling CS 418 – Mar. 9, 2016 8 / 10

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_9
https://en.wikipedia.org/wiki/2016


Some examples

See examples.cu.
See examples.erl.

Mark Greenstreet CUDA: Synchronization and Scheduling CS 418 – Mar. 9, 2016 9 / 10

http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/03-09/examples.cu
http://www.ugrad.cs.ubc.ca/~cs418/2015-2/lecture/03-09/examples.erl
http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_9
https://en.wikipedia.org/wiki/2016


Preview

March 11: The GPU Memory Model 1
Reading: Kirk & Hwu, Chapter 5.

March 14: The GPU Memory Model 2
Reading: Kirk & Hwu, Chapter 5.

March 16: GPU Performance 1
Reading: Kirk & Hwu, Chapter 6.

March 18: GPU Performance 2
Reading: Kirk & Hwu, Chapter 6.

March 21: Parallel Sorting
Reading: TBD.

But of course, we’ll adjust this as we go.

Mark Greenstreet CUDA: Synchronization and Scheduling CS 418 – Mar. 9, 2016 10 / 10

http://www.cs.ubc.ca/~mrg
http://www.ugrad.cs.ubc.ca/~cs418
https://en.wikipedia.org/wiki/March_9
https://en.wikipedia.org/wiki/2016

